96. On Selberg's Function

By Yoshikazu EDA

Department of Mathematics, Kanazawa University (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1953)

1. In a recent paper, A. Selberg has achieved an elementary proof of Dirichlet's theorem about primes in an arithmetic progression⁵ (numbers in square brackets refer to the references at the end of this note), and his proof is based upon the following Selberg's Inequality :

(1)
$$\frac{x}{k}V(x) = \sum_{p \leq x, \ p \equiv \lambda(k)} \log^2 p + \sum_{pq \leq x, \ pq \equiv \lambda(k)} \log p \log q + O(x),$$

where

(2)
$$V(x) = \sum_{d \le x, (d,k)=1} \frac{\mu(d)}{d} \log^2 \frac{x}{d} = \frac{2}{\varphi(k)} x \log x + O(x).$$

For every positive integer k, $\mu(k)$ and $\varphi(k)$ are the Möbius function and the Euler function respectively. p, q are primes and (k, l)=1.

We shall give in this note the generalized forms of (1) and (2) (Theorems 1, 2 and 3). Our method is based upon Selberg's original papers⁵⁾⁶⁾, and Shapiro's⁷⁾. The umbral calculus is very effective in our description of the calculations and results¹⁾. The results of our previous paper²⁾ are used here without proofs.

2. Preliminary Lemmas and Notions

Lemma 1. For every integers k and i, the number theoretic function $[k]^i \ge 0$ with the following initial conditions: $k \ge 0$, $k \ge i$, $[0]^i = 1$ for i = 0, 1, 1/|i|! for i < 0 and $[k]^i = 0$ for k < i, is defined by the recurrence formula $[k]^i = [k-i]^i + i[k-1]^{i-1}$. Then, we get $[k]^i = k!/(k-i)!$ ($i \le 0$). $[k]^i$ ($i \ge 0$). is said the factorial polynomial in k degree i.

Lemma 2.

$$\sum_{i=l+m}^{k} (-1)^{i} [i]^{m} {k \choose l} {i-m \choose l} = \begin{cases} 0, & \text{for } k \neq l+m, \\ (-1)^{k} [k]^{k-l}, & \text{for } k = l+m, \end{cases}$$

where ${k \choose l} = [k]!/i!, \ k \ge i \ge 0$ is the binomial coefficient.

Lemma 3. λ_n is a partition of n and if there are m_1 parts equal to 1, m_2 parts equal to 2, m_3 parts equal to 3, etc., then the partition may be written as⁴ $\lambda_n = (1^{m_1} 2^{m_2} 3^{m_3} \dots), m_i \ge 0$, and we put $m = \sum_{i=1}^{m} m_i, p(\lambda_n) = m!/m_1! m_2! \dots m_n! = (m_1, m_2, \dots, m_n)$. We associate a monomial $M(\lambda_n, x) = M(\lambda_n, x_1, \dots, x_n) = x_1^{m_1} x_2^{m_2} \dots x_n^{m_n}$ with a partition λ_n . Put $A^n = A^n(x) = A^n(x_1, x_2, \dots, x_n) = \sum_{\lambda_n} p(\lambda_n) M(\lambda_n, x)$, then, we have $A^n = \sum_{j=1}^{n} x_j A^{n-j}$.