109. A Non-Commutative Integration Theory for a Semi-Finite AW*-algebra and a Problem of Feldman

By Kazuyuki SAITÔ

Department of Mathematics, Tôhoku University

(Comm. by Kinjirô Kunugi, M. J. A., May 12, 1970)

We shall extend Feldman's result on "Embedding of AW^* -algebras" to semi-finite AW^* -algebras, that is, we shall show that a semi-finite AW^* -algebra with a separating set of states which are completely additive on projections (c.a. states) has a faithful representation as a semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite AW^* -algebra with a separating set $\mathfrak S$ of c.a. states. By a c.a. state ϕ on M we mean a state on M such that for any orthogonal family of projections $\{e_i\}$ in M with $e=\sum_i e_i \ \phi(e)$ $=\sum_i \phi(e_i)$. Let $\mathcal C$ be the algebra of "measurable operators" affiliated with M [6]. Denote the set of all positive elements, projections, partial isometries and unitary elements in M by M^+ , M_p , M_{pi} and M_u , respectively.

Let $\widetilde{\otimes}$ be the set of finite linear combinations of elements in $\{a^*\omega a, \omega \in \mathbb{S}, a \in M\}$, where $(a^*\omega a)(x) = \omega(axa^*)$ for all $x \in M$. For any positive number ε and any positive integer n, put $V_{\varepsilon,n}(\omega_1, \omega_2, \cdots, \omega_n)(0) = \{a; |\omega_i(a)| < \varepsilon, i = 1, 2, \cdots n, \omega_1, w_2, \cdots, \omega_n \in \widetilde{\mathbb{S}}\}$ and we define the $\sigma(\widetilde{\mathbb{S}})$ -topology of M by assigning sets of the form $V_{\varepsilon,n}(\omega_1, \omega_2, \cdots, \omega_n)(0)$ to be its neighborhood system of 0. Since $\widetilde{\mathbb{S}}$ is a separating set of continuous linear functionals on M, this topology is the separated locally convex topology defined by the family of semi-norms $q_{\omega}(x) = |\omega(x)|, \omega \in \widetilde{\mathbb{S}}$. Then we have, by [3, Lemma 3],

Lemma 1. Let $\{e_{\alpha}\}\alpha \in A$ be an orthogonal set of projections in M such that $e = \sup \left[\sum \{e_{\alpha}, \alpha \in I\}, A \supset I \in F(A) \text{ where } F(A) \text{ is the family of all finite subsets of } A\right]$, then $\sum \{e_{\alpha}, \alpha \in I\} \rightarrow e(I \in F(A))$ in the $\sigma(\mathfrak{S})$ -topology.

Lemma 2. Any abelian AW^* -subalgebra, especially, the center Z of M is a W^* -algebra ([7]) and the $\sigma(\mathfrak{S})$ -topology restricted to this subalgebra is equivalent to the σ -topology on bounded spheres.

Let Z be the set of all $[0, +\infty]$ -valued continuous functions on the spectrum of Z [1], then we have

Theorem 1. There is an operation Φ from M^+ to Z having the following properties:

- (i) $\Phi(h_1+h_2) = \Phi(h_1) + \Phi(h_2) h_1, h_2 \varepsilon M^+;$
- (ii) $\Phi(\lambda h) = \lambda \Phi(h)$ if λ is a positive number and $h \in M^+$;