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1. Introduction. We will use the following notion and notations.
We mainly refer to [3]; see also [1].

Let T be a closed linear operator in a Banach space E, o(T) its re-
solvent set, and o(T) its spectrum. The dimension of the null space of
T, N(T), written a(T), will be called the kernel index of T and the de-
ficiency of the range T in E, R(T), written 8(T), will be called the de-
ficiency index of T. The index k(T) is defined by

£(T)=a(T)— (D).

If the operator T has a finite index, it is called a F'redholm oper-
ator.

We denote by a,,(T) the set of all complex number 4 for which
T — I is not a Fredholm operator with index zero and call it the essen-
tial spectrum of T. The set of points of ¢(T) which is not an isolated
eigenvalue 1 of finite multiplicity, namely a(T —AI)<oo, will be denot-
ed by a,T). Here an isolated eigenvalue means an eigenvalue which is
an isolated point of the spectrum.

Let X be a Banach space and H a Hilbert space such that

1) XCH, and the embedding mapping ; X—H is continuous,

ii) X is dense in H.

The purpose of this paper is to prove the following theorem:

Theorem. Let T be a closed linear operator in X and essentially
self-adjoint in H, that is, its smallest closed extension (or its closure)
in H is self-adjoint. Then

UO(T [ X)=Gem(T| X)

Here we denoted by T'|X the operator considered in X. Similarly
we will denote by T the closure of T in H, ¢(T|H) the spectrum of T in
H and so on.

Since the index of the Fredholm operator is invariant under the
addition of compact operators [3, Theorem V.2.1], in particular, when
K is a linear compact operator in X,

O-em(T I X)zoem(T‘l'K l X).
In addition, if K is symmetrizable, that is, symmetric with respect to
the inner product of H, T+K is essentially self-adjoint [4, p. 288,
Theorem 4.4] and, by our Theorem



