50. Probabilities on Inheritance in Consanguineous Families. VI

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.A., March 12, 1954)

VI. Mother-descendant combinations through several consanguineous marriages

1. Special combination with several consanguineous marriages

We have discussed in the preceding chapter ${ }^{1)}$ the motherdescendant combinations through a single consanguineous marriage. We now attempt to generalize the problem to the case where several consanguineous marriages intervene between a mother and her descendant. Our present purpose is to determine the probability of a combination which consists of the original individual $A_{\alpha \beta}$ and of its descendant $A_{\xi \eta}$, consanguineous marriages interjacent between them occurring t times, and which is designated, with an easily comprehensible routine notation, by

$$
\pi_{\mu_{1} \nu_{1} ; p_{1}|\cdots| \cdots \mu_{t} \nu_{\nu} ; n_{t} n_{t}}\left(\alpha \beta ; \xi_{\eta}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{\mu_{1} \nu_{1} ; ;_{1}|\cdots| \mu_{1} \nu_{\psi} \nu_{;} ; n_{t}}\left(\alpha \beta ; \xi_{\eta}\right)
$$

or briefly, provided no confusion can arise, by

$$
\pi_{(\mu \nu ; \eta)_{t}}\left(\alpha \beta ; \xi_{\eta}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{(\mu \gamma ; n)_{t}}\left(\alpha \beta ; \xi_{\eta}\right) .
$$

By definition, the reduced probability $\kappa_{(\mu \nu ; n)_{t}}$ is given by

$$
\kappa_{(\mu \nu ; m)_{t}}\left(\alpha \beta ; \xi_{\eta}\right)=\sum \prod_{r=1}^{t} \kappa_{\mu_{r} \nu_{r} ; 2_{r}}\left(a_{r_{-1}} b_{r_{-1}} ; a_{r} b_{r}\right)
$$

with $a_{0} b_{0} \equiv \alpha \beta$ and $a_{t} b_{t} \equiv \xi \eta$, where the summation extends over all the possible sets of $t-1$ genotypes $A_{a_{r} b_{r}}(r=1, \ldots, t-1)$.

We can really permit here also the degenerate cases where some of the n_{r} 's with $1 \leqq r<t$ vanish. But, these exceptional cases will be postponed to a later chapter. In the present section we shall deal with a special case where the n 's are all equal to unity. Its defining equation then becomes

$$
\kappa_{(\mu \nu ; 1)_{t}}\left(\alpha \beta ; \xi_{\eta}\right)=\sum \kappa_{(\mu \nu ; 1)_{t-1}}(\alpha \beta ; \alpha b) \kappa_{\mu_{t^{\prime}} \nu_{t} ; 1}\left(a b ; \xi_{\eta}\right)
$$

whence follows, as verified by induction, the formula

$$
\begin{aligned}
\kappa_{(\mu \nu ; 1)_{t}}\left(\alpha \beta ; \xi_{\eta}\right)= & \bar{A}_{\xi_{\eta}}+2^{-t+1} \Lambda_{t} Q\left(\alpha \beta ; \xi_{\eta}\right)+4 u_{t} R\left(\xi_{\eta}\right) \\
& +2 v_{t} S\left(\alpha \beta ; \xi_{\eta}\right)+2 w_{t} T\left(\alpha \beta ; \xi_{\eta}\right) ; \\
\Lambda_{t}=\prod_{r=1}^{t} L_{r} \equiv \prod_{r=1}^{t}\left(2^{-\mu_{r}}+2^{-\nu_{r}}\right), & u_{t}=\sum_{r=1}^{t-1} \prod_{s=r+1}^{t} 2^{-\lambda_{s}-2}, \\
v_{t}=\sum_{r=1}^{t-1} 2^{-r+1} \Lambda_{r} \prod_{s=r+1}^{t} 2^{-\lambda_{s}-2}, & w_{t}=\prod_{s=1}^{t} 2^{-\lambda_{s}-2} ;
\end{aligned}
$$

[^0]
[^0]: 1) Cf. Proc. Japan Acad. 30 (1954), 152-155. There the value of $S(i j ; i k)(p .154$, 1. 6) should be read $-\frac{1}{4} k(1-4 i)$ instead of $-\frac{1}{4} k(1-4 k)$.
