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M. Morse and G. A. Hedlund solved the problem of the topological
transitivity for each two-dimensional closed orientable Riemannian
manifold of class C and of genus p>l provided that no geodesic
on has on it two mutually conjugate points [4J. I have shown
the one method of symbolic representation already [1]. In this
paper we shall show the new proof of topological transitivity as
an application of the symbolic representation. (Cf. Morse-Hedlund
2,(.)

1. We already know the following theorems of symbolic rep-
resentation.

Theorem 1. If there be given any regular geodesic relative to
P on ,, there exists one, and only one unending regular sequence

whose generating symbols are 5., b, -, b.7.
Theorem 2. If there be given any unending regular sequence

whose generating symbols are , b, 5;, b- there exists at least one
geodesic which corresponds to the given regular sequence.

Now we prepare some definitions.
Definition 1. Any geodesic or geodesic ray on is represented

by a curve on phase space 2 o . If its closure coincides with
2, we say that the geodesic or geodesic ray is transitive.

Definition 2. Any symbolic ray will be termed transitive if
it contains a copy of all regular subblocks.

2. Lemma 1. There exists a transitive regular symbolic ray.
Proof. As the set of regular blocks is enumerable, we denote

them A, A., A,
Then the ray

X--Ae AeAe
is regular if the symbols e are successively chosen so as to satisfy
the conditions (1) and (2) of regular sequence. (Cf. 1.) It is
evident that X is transitive.

Theorem 3. In the case p1 if the non-conjugacy hypothesis
holds good, two geodesic rays with the same initial point on P can
not be of the same type.

Proof. Let two geodesic rays r, r. with the same initial point
on be of the same type and f be the mapping explained in my


