No. 8]

157. The Divergence of Interpolations. I

By Tetsujiro KAKEHASHI (Comm. by K. Kunugi, M.J.A., Oct. 12, 1954)

The convergence of interpolation polynomials to a given function in the points which satisfy a certain condition has been studied sufficiently by Walsh and others.

Let f(z) be a function which is single valued and analytic throughout the interior of the circle $C_R:|z|=R>0$ and which has singularities on C_R . Let $W_n(z)$ be a sequence of polynomials of respective degrees n such that the sequence of $W_n(z)/z^n$ converges to $\lambda(z)$ analytic and non-vanishing exterior to a circle $C_R:|z|=R'< R$ and uniformly on any closed limited point set exterior to $C_{R'}$. Then the sequence of polynomials $S_n(z;f)$ of respective degrees n found by interpolation to f(z) in all the zeros of $W_{n+1}(z)$ converges to f(z) uniformly on any closed set interior to C_R .

But the divergence of $S_n(z;f)$ at every point exterior to C_R is not yet established in general, as far as I know. If we choose a certain condition of $W_n(z)$ which is stronger than the condition above-mentioned, the divergence at every point exterior to C_R can be proved. (Cf. T. Kakehashi: On the convergence-region of interpolation polynomials, Journal of the Mathematical Society of Japan, 6(1954).)

The purpose of this paper is to study the divergence of $S_n(z; f)$ which interpolate to f(z) with singularities of a certain type on C_n , in the points which satisfy the condition mentioned formerly.

1. Let $\varphi(t)$ be the function single valued and analytic on the circle C_R : |t|=R>0, a be a point on C_R and m be a complex number. If the real part of m is positive, the integral

$$\int_{C_R} \varphi(t) (t-a)^{m-1} dt \quad ; \quad a = Re^{ia}$$

exists. But if the real part of m is not positive, the above integral does not exist. For such cases, we define the finite part of the integral as follows:

(1)
$$Pf. \int_{c_R} \varphi(t) (t-a)^{m-1} dt = \int_{c_R} \psi(t) (t-a)^{m+p} dt,$$

where $\psi(t)$ is the function single valued and analytic defined by

(2)
$$\varphi(t) = \sum_{k=0}^{p} \frac{\varphi^{(k)}(a)}{k!} (t-a)^{k} + (t-a)^{p+1} \psi(t)$$