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1. Introduction. S. Izumiand G. Sunouchi® proved the follow-
ing theorems concerning uniform convergence of Fourier series:
Theorem 1. If

F&—ft= O(I/IOgTF?T_> as 1, >

then the Fourier series of f(t) comverges uniformly at t=u.
Theorem II. If

fO—fth= o(l/loglogl L 1

and the nth Fourier coefficients are O((log n)*/n) for a>0, then the
Fourter series of f(t) converges uniformly at t=u.
In this paper, we treat the case that the order of f(¢)—f (')

is o<1/<log |71'tT—) )(1 >a>0), o /<log logxﬁ—}, 7> >(a>0) and

more generally o(l/(log”,c it 1t'| ) >
2. Theorem 1. Let 0<a<l1. If
FO—f ()= o<1 / <log o ) ) &, #'~0)

and the nth Fourier coefficients of f(t) is of order O(¢“=™"In), then
the Fourier series of f(t) converges uniformly at t=0.
Proof. We assume that z,—0 and f(0)=0.

Siw)= - [(LF @+ F )] S ¢+ o(1)

=1 f " f e ] +o(1)

Hllogm)® /

) as t,t'—>x

=L+ T+ K]+0Q),

say, where B is the least number >1 such that 2n]|e*¢™" then it
is sufficient to prove that s,(x,)=o0(1) as n—>oo,
Since f(x) is continuous, we have I=o(1).
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