No. 9] 801

168. On the Strong Summability of the Derived Fourier Series

By Masakichi KINUKAWA
Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1954)

1. Let f(t) be a periodic function of bounded variation with
period 2w, and its Fourier series be
a,/2+ f‘. (@, cos nt+b, sin nt)= f‘:)An(t).
n=1 M=
We shall consider the derived Fourier series

i‘ n(b,, cos nt—a,, sin nt)= i ALt)
n=]1

n=1

and its conjugate series
g n(a,, cos nt +b, sin nt) =§; BJ(t).
We denote by 7,(t) and 7,(f) the nth partial sums of them, i.e.
() :T%]lm(bm cos mt— a,, sin mt) = mé_fl,’,,(t),

To(t)= i m{at,,, COS Mt + by, Sin ME)= ZWIBZ,,(t) .
m=1 m=
As in the case of Fourier series, we use the modified partial sums
of them;
@) =7 &) — ANO)[2, TEE)=n7()—B()/2.
Recently B.N. Prasad and U.N. Singh® proved the following
theorems:

Theorem A. If f(t) is a continuous function of bounded varia-
tion which is differentiable at t=x and if for some €>0

Gt)= j 1dg)] = oft(log 1)}, as t>0,
where g(w)=g,(u)=fx+u)—f@—u)—2uf'(x), then

31l ra(@)—f@) | =o(n).
That s, the derived Fourier series of f(t) ts (H, 1) summable to the
sum f'(x) at t=uw.

Theorem B. If f(t) is a continuous function of bounded wvaria-
tton which is differentiable at t=x and if for some >0
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