6. Dirichlet Problem on Riemann Surfaces. V (On Covering Surfaces)

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1955)

1) Covering Surfaces over a Null-Boundary Riemann Surface

Let \underline{R} be a null-boundary Riemann surface and let R be a covering surface of F-type over \underline{R} . We denote by $\mathfrak{U}(R, \underline{R}^*)$ the set of all A.B.P.'s of R. Let \mathfrak{F} be a closed set of $\mathfrak{U}(R, \underline{R}^*)$. The upper class $U_{\mathfrak{F}}^{\mathbb{R}}$ is the set of all non negative continuous super-harmonic functions U(z) such that $\lim U(z) \geq 1$ along every curve tending to \mathfrak{F} . We denote by $\overline{H}_{\mathfrak{F}}^{\mathbb{R}}(z)$ the lower envelope of $U_{\mathfrak{F}}^{\mathbb{R}}$. Similarly the lower class $B_{\mathfrak{F}}^{\mathbb{R}}$ is the class of all bounded continuous sub-harmonic functions V(z) such that $\lim V(z) \leq 0$ along every curve tending to the boundary except \mathfrak{F} . Further it is clear that $\overline{H}_{\mathfrak{F}}^{\mathbb{R}}(z) \geq \underline{H}_{\mathfrak{F}}^{\mathbb{R}}(z)$ on a covering surface of D-type. If they coincide at one point of R. Then they are identical.

Lemma. Let \mathfrak{F} be a closed set of $\mathfrak{A}(R, \underline{R}^*)$ of a covering surface of F-type. Then

 $\overline{H}_{\mathfrak{F}}^{R}(z) = \underline{H}_{\mathfrak{F}}^{R}(z).$

Proof. We map the universal covering surface R^{∞} of R onto the unit circle $U_{\xi}:|\xi|<1$. Since by assumption, the mapping function $f(\xi): \mathbb{R}^{\infty} \to \mathbb{R} + \mathfrak{A}(\mathbb{R}, \mathbb{R}^*)$ has angular limits almost everywhere on $|\xi|=1$ and since $\mu(R,B)=0$, where $\mu(R,B)$ is the outer harmonic measure of the boundary of R lying on the boundary of R. We can suppose that $f(\xi)$ has angular limits lying in <u>R</u>. Let \mathfrak{F}'_n be the set of points of $R + \mathfrak{U}(R, \underline{R}^*)$ which have distance $\leq \frac{1}{n}$ from \mathfrak{F} . Put $\mathfrak{F}_n = \mathfrak{F}'_n \cap \mathfrak{U}(R, \underline{R}^*)$ and let F be the regular image of \mathfrak{F} . Then, since R is a covering surface of F-type, F_n is measurable and $f(\xi)$ has angular limits at F'_n , where mes $|F_n - F'_n| = 0$. Thus we can suppose $f(\xi)$ has angular limits at F_n . Let $\{R_m\}$ be an exhaustion of R with compact relative boundaries $\{\partial R_m\}$ and let $\partial \mathfrak{F}'_n$ be the relative boundary of \mathfrak{F}'_n . Let $\omega^n_{m,m+i}(z)$ be a harmonic function in $R_{m+i} - (\mathfrak{F}'_n \cap (R_{m+i} - R_m))$ such that $\omega_{m,m+i}^n(z) = 1$ on $\partial(\mathfrak{F}'_n \cap (R_{m+i} - R_m))$ and $\omega_{m,m+i}^n(z)=0$ on $\partial R_{m+i}-\mathfrak{F}'_n$. Then we see that $\omega_{m,m+i}^n(z)\uparrow$ $\omega_m^n(z)$ and $\omega_m^n(z) \downarrow \omega^n(z)$. Thus $\omega^n(z)$ is contained in the class $U_{\mathfrak{F}}^n$ for

¹⁾ See, "Dirichlet problem. III".