No. 2] 41

Sur les Points Singuliers d'une Équation Différentielle Ordinaire du Premier Ordre

Par Yasutaka Sibuya

Institut de Mathématiques, Université de Tokyo (Comm. by Z. Suetuna, M.J.A., Feb. 18, 1955)

1. L'équation différentielle

$$(1.1) xy' = y(\lambda + yf(x, y)),$$

où f(x,y) est une fonction holomorphe pour x=y=0, admet si λ est un nombre irrationnel, une solution formelle

(1.2)
$$y = z\{1 + \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} b_{mn} x^m z^n\},$$

z désignant la fonction Cx^{λ} . M. C. L. Siegel a démontré la convergence de la série (1.2) sous la condition,

$$|(n-1)\lambda+m|>K(m+n)^{-\nu}$$

K et ν étant des nombres positifs, indépendants de m et de n. D'autre part, M. H. Dulac a donné un exemple tel que la série (1.2) diverge. Mais son exemple est artificiel et il y aurait lieu de se demander: la série (1.2) converge-t-elle si f(x, y) est une fonction rationnelle? La réponse est négative; c'est ce que nous allons montrer.

Considérons l'équation différentielle

$$(2.1) xy' = \lambda y + y^2 + p(x)y^3,$$

οù

$$(2.2) p(x) = a_1 x + a_2 x^2 + \cdots + a_m x^m + \cdots.$$

En portant l'expression (1.2) dans (2.1), nous obtenons

(2.3)
$$\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (m+n\lambda)b_{mn}x^{m}z^{n} = z\{1+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} b_{mn}x^{m}z^{n}\}^{2} + p(x)z^{2}\{1+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} b_{mn}x^{m}z^{n}\}^{3}.$$

On voit immédiatement

$$(2.4) b_{nk} = \lambda^{-k} (k \ge 0)$$

(2.4)
$$b_{0k} = \lambda^{-k}$$
 $(k \ge 0),$ (2.5) $b_{m1} = 0$ $(m \ge 1),$

et

$$(m+2\lambda)b_{m2}=a_m+\cdots,$$

les termes non écrits ne dépendant que de a_1, \ldots, a_{m-1} . Si donc on pose

$$(2.6) b_{mn} = F_{mn}(\lambda, a_1, \ldots, a_m)/(m+n\lambda),$$

$$(2.7) F_{mn} = B_{mn}(\lambda)a_m + R_{mn}(\lambda, a_1, \ldots, a_{m-1}),$$

on a

(2.8)
$$B_{m_2}(\lambda) = 1 \quad (m \ge 1).$$

En portant les expressions (2.6) dans (2.3), nous obtenons

(2.9)
$$B_{mn}(\lambda) = 2 \sum_{u+v=n-1} b_{0u} B_{mv}(\lambda) / (m+v\lambda) + \sum_{u+v+v=n-2} b_{0u} b_{0v} b_{0v}$$