152 [Vol. 31,

36. Vector-space Valued Functions on Semi-groups. II

By Kiyoshi Iséki

Kobe University

(Comm. by K. Kunugi, M.J.A., March 12, 1955)

In an earlier Note (5),*) the author developed theory of vector-valued functions, especially almost periodic functions and ergodic functions on a semi-group G into a locally convex vector space E and proved the existence theorem of the mean value of ergodic function for some spaces.

In this Note, we shall consider a locally convex vector space E such that every ergodic function f(x) has the mean M(f). Therefore, there is an M(f) of E such that, for any n.b.d. U,

$$M(f) - \frac{1}{n} \sum_{i=1}^{n} f(a_i d) \in U$$

and

$$M(f) - \frac{1}{m} \sum_{j=1}^{m} f(cb_j) \in U$$

for some $a_i(i=1, 2, ..., n)$, $b_i(j=1, 2, ..., m)$ and all c, d of G.

III. Invariant linear space of ergodic functions

The following propositions are clear.

Proposition 3.1. A constant function $f(x) \equiv f$ has the mean f: M(f) = f.

Proposition 3.2. If f(x) is ergodic, then $\alpha f(x)$ is ergodic and $M(\alpha f) = \alpha M(f)$.

Definition 3. Let M be a set of ergodic functions. M is said to be a left invariant linear set, if it satisfies the following conditions:

- (3) for any element a of G and $f(x) \in \mathfrak{M}$, $f(ax) \in \mathfrak{M}$,
- (4) for any reals, α , β , and f(x), $g(x) \in \mathfrak{M}$, $\alpha f(x) + \beta g(x) \in \mathfrak{M}$.

Theorem 8. Let \mathfrak{M} be a left invariant linear set of ergodic function, then

$$(5)$$
 $M_{x}(f(ax)) = M_{x}(f(x)),$

(6)
$$M(\alpha f + \beta g) = \alpha M(f) + \beta M(g).$$

Proof. Let $f \in \mathbb{M}$ and U any n.b.d., then there are elements a_1, a_2, \ldots, a_n and d of G such that

$$M_x(f(ax)) - \frac{1}{n} \sum f(aa_i d) \in U.$$

Thus $M_x(f(ax))$ is *U*-left mean of f(x). This proves (5).

We shall prove M(f+g)=M(f)+M(g). Since the Propositions 1, 2, we have the equality (6). For a given n.b.d. U, we can find

^{*)} Additional references are given in (5).