100. On a Homogeneous Space with Invariant Affine Connection

By Shigeru ISHIHARA and Morio OBATA Tokyo Metropolitan University (Comm. by K. KUNUGI, M.J.A., July 12, 1955)

1. Preliminaries. Let G/H be a reductive homogeneous space,¹⁾ where G is a connected Lie group and H a closed subgroup of G. Then in the Lie algebra g of G there exists a subspace m such that $g=m+\mathfrak{h}$ (direct) and $ad(H)\cdot\mathfrak{m}\subset\mathfrak{m}$, where \mathfrak{h} is the subalgebra of g corresponding to H. If we denote by $[\mathfrak{h}, \mathfrak{m}]$ the subspace spanned by all elements of the form $[U, X], U \in \mathfrak{h}, X \in \mathfrak{m}$, we have then $[\mathfrak{h}, \mathfrak{m}]\subset\mathfrak{m}$. \mathfrak{m} may be identified with the tangent space at the point $p_0=H$ of G/H. Throughout this note we assume that G is almost effective on G/H as a transformation group, that is to say that H does not contain any positive-dimensional normal subgroup of G. It follows then that \mathfrak{h} contains no non-trivial ideal of g and that the adjoint representation $\mathfrak{h} \to \mathrm{ad}(\mathfrak{h})$ in \mathfrak{m} of \mathfrak{h} is faithful.

Now let H be a Lie group and ρ a representation of H on a vector space m. A vector X of m is said to be *invariant by* H if we have $\rho(h)X=X$ for every $h \in H$. This being the case, we have $\tilde{\rho}(U) \cdot X=0$ for every $U \in \mathfrak{h}$, where \mathfrak{h} is the Lie algebra of H and ρ is the representation of \mathfrak{h} induced by ρ . In this case, X is called *invariant by* \mathfrak{h} .

LEMMA. Let \mathfrak{h} be a Lie algebra and ρ a representation of \mathfrak{h} on a vector space \mathfrak{m} . Assume further that ρ is semi-simple. Then there is no non-zero vector of \mathfrak{m} invariant by \mathfrak{h} if and only if $\rho(\mathfrak{h}) \cdot \mathfrak{m} = \mathfrak{m}$, where $\rho(\mathfrak{h}) \cdot \mathfrak{m}$ is the space spanned by all elements of the form $\rho(U) \cdot X$, $U \in \mathfrak{h}$, $X \in \mathfrak{m}$.

PROOF. Assuming that there is an invariant vector X_1 of m, let \mathfrak{m}_1 be the subspace spanned by X_1 . Then we have $\rho(\mathfrak{h}) \cdot \mathfrak{m}_1 = 0$. ρ being semi-simple, there exists an invariant subspace \mathfrak{m}_2 such that m is the direct sum of \mathfrak{m}_1 and \mathfrak{m}_2 , $\rho(\mathfrak{h}) \cdot \mathfrak{m}_2 \subset \mathfrak{m}_2$. Thus we have

 $\rho(\mathfrak{h})\cdot\mathfrak{m}=\rho(\mathfrak{h})\cdot(\mathfrak{m}_1+\mathfrak{m}_2)=\rho(\mathfrak{h})\cdot\mathfrak{m}_2\subset\mathfrak{m}_2+\mathfrak{m}.$

Conversely, assume that $\rho(\mathfrak{h})\cdot\mathfrak{m}=\mathfrak{m}_2\neq\mathfrak{m}$, then the subspace \mathfrak{m}_2 is a proper invariant subspace of \mathfrak{m} and there exists an invariant subspace \mathfrak{m}_1 such that $\mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}_2$ (direct). Then we have $\rho(\mathfrak{h})\cdot\mathfrak{m}_1\subset$ $\mathfrak{m}_1\cap\mathfrak{m}_2=(0)$, which proves that \mathfrak{m} has an invariant vector.

2. The property (A). The notation and assumptions being as

¹⁾ Cf. K. Nomizu: Invariant affine connections on homogeneous spaces, Amer. J. Math., 76, 33-65 (1954).