95. Lacunary Fourier Series. I

By Masako SATÔ

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., July 12, 1955)

1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of $f(t)$ has a gap $0 < |n-n_k|$ $\leq N_k$ such that

$$
\lim N_k/\!\log n_k\!=\!\infty
$$

and $f(t)$ satisfies a Lipschitz condition of order α (0< α <1) in some interval $|t-t_0| \leq \delta$, then

 $a_{n_{\bm k}}{=}O(1/n_{k}^a),\quad b_{n_{\bm k}}{=}O(1/n_{k}^a),$

where a_{n_k} , b_{n_k} are non-vanishing Fourier coefficients of $f(t)$.

In the present paper we treat the Fourier series with a certain gap and satisfying some continuity condition at a point, instead of in a small interval. Our theorems depend on the lemma (Lemma ¹ in $\S 2$), which is due to M. E. Noble, except (iv) and (v).

We can also prove theorems concerning absolute convergence of Fourier series with the above-mentioned conditions, analogously to M. E. Noble $\lceil 1 \rceil$. These will be found in the second paper.

2. Lemma 1. Let (δ_m) be a sequence tending to zero and let $n = [4em/\delta_m]$. Then there exists a trigonometrical polynomial $T_n(x)$ of degree not exceeding n with constant term 1 such that: 1

$$
(i) \t\t |T_n(x)| \leq A/\delta_m, \text{ for all } x,
$$

(i)
$$
|T_n(x)| \le A_1 \log n
$$
, $\int 0^{\pi} u(t) dt$,
\n(ii) $|T_n(x)| \le A_n \log n$, $(\delta_m \le |x| \le \pi)$,

(iii) $|T_n'(x)| \leq An/\delta_m$, for all x,

$$
\text{(iv)} \quad |T'_n(x)| \leq A(n^2/\delta_m e^m + 1/x^2), \quad (\lambda \delta_m \leq |x| \leq \pi, \quad \lambda > 1)^{2}
$$

(v) $|T''_n(x)| \leq An^2/\delta_m$, for all x.

Proof. Let $E_m = (-\delta_m, \delta_m)$, and $C_m(x)$ be its characteristic function. We choose then $\tau_m = \delta_m/2m$ and construct a set of even function $h_i(x)$ $(i=0,1,2,\ldots)$ defined by

$$
h_0(x) = \frac{\pi}{\delta_m} C_m(x),
$$

$$
h_{i+1}(x) = \frac{1}{\tau_m} \int_x^{\alpha + \tau_m} h_i(t) dt \qquad (i = 0, 1, 2, ...),
$$

for $x \geq 0$ and $i \leq m-1$.

It is easy to see hat

$$
h_m(x) = \begin{cases} 0 & (\delta_m \leq |x| \leq \pi), \\ \pi/\delta_m & (|x| \leq \delta_m/2), \end{cases}
$$

¹⁾ A denotes an absolute constant which is not the same in different occurrences.

²⁾ λ may be taken as near 1 as we like when m is sufficiently large.