95. Lacunary Fourier Series. I

By Masako SATÔ

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., July 12, 1955)

1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of f(t) has a gap $0 < |n-n_k|$ $\leq N_k$ such that

$$\lim N_k / \log n_k = \infty$$

and f(t) satisfies a Lipschitz condition of order $\alpha (0 < \alpha < 1)$ in some interval $|t-t_0| \leq \delta$, then

 $a_{n_k} = O(1/n_k^a), \quad b_{n_k} = O(1/n_k^a),$ where a_{n_k} , b_{n_k} are non-vanishing Fourier coefficients of f(t).

In the present paper we treat the Fourier series with a certain gap and satisfying some continuity condition at a point, instead of in a small interval. Our theorems depend on the lemma (Lemma 1 in §2), which is due to M. E. Noble, except (iv) and (v).

We can also prove theorems concerning absolute convergence of Fourier series with the above-mentioned conditions, analogously to M. E. Noble [1]. These will be found in the second paper.

2. Lemma 1. Let (δ_m) be a sequence tending to zero and let $n = [4em/\delta_m]$. Then there exists a trigonometrical polynomial $T_n(x)$ of degree not exceeding n with constant term 1 such that:¹⁾

(i)
$$|T_n(x)| \leq A/\delta_m$$
, for all x ,

(ii)
$$|T_n(x)| \leq An/\delta_m e^m, \ (\delta_m \leq |x| \leq \pi),$$

(iii) $|T'_n(x)| \leq An/\delta_m$, for all x,

(iv)
$$|T'_n(x)| \leq A(n^2/\delta_m e^m + 1/x^2), \ (\lambda \delta_m \leq |x| \leq \pi, \ \lambda > 1)^{2/2}$$

 $|T_n''(x)| \leq An^2/\delta_m$, for all x. (\mathbf{v})

Proof. Let $E_m = (-\delta_m, \delta_m)$, and $C_m(x)$ be its characteristic function. We choose then $\tau_m = \delta_m/2m$ and construct a set of even function $h_i(x)$ $(i=0,1,2,\ldots)$ defined by

$$h_{_0}(x) = rac{\pi}{\delta_m} C_m(x),$$

 $h_{i+1}(x) = rac{1}{ au_m} \int_x^{x + au_m} h_i(t) dt$ $(i=0, 1, 2, \ldots),$

for $x \ge 0$ and $i \le m-1$.

It is easy to see that

$$h_m(x) = egin{cases} 0 & (\delta_m \leq \mid x \mid \leq \pi), \ \pi/\delta_m & (\mid x \mid \leq \delta_m/2), \end{cases}$$

¹⁾ A denotes an absolute constant which is not the same in different occurrences.

²⁾ λ may be taken as near 1 as we like when m is sufficiently large.