508 [Vol. 31,

Lacunary Fourier Series.

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1955)

1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of f(t) has a gap $0 < |n-n_k|$ $\leq N_k$ such that

$$\lim N_k/\log n_k = \infty$$

and f(t) satisfies a Lipschitz condition of order α , where $\frac{1}{2} < \alpha < 1$, in some interval $|x-x_0| \leq \delta$. Then

$$\sum (|a_{n_k}|+|b_{n_k}|)<\infty$$
,

where a_{n_k} , b_{n_k} are non-vanishing Fourier coefficients of f(t).

As a continuation of the first paper [2] we treat absolute convergence of the Fourier series with a certain gap and satisfying some continuity condition at a point (Theorems 3 and 4).

We need following theorems and lemmas in [2].

Lemma 1. Let (δ_m) be a sequence tending to zero and let $n = \lceil 4em/\delta_m \rceil$. Then there exists a trigonometrical polynomial $T_n(x)$ of degree not exceeding n with constant term 1 such that¹⁾

- (i) $|T_n(x)| \leq A/\delta_m$
- $|T_n(x)| \leq An/\delta_m e^m,$ for $\delta_m \leq |x| \leq \pi$, (ii)
- for all x, (iii) $|T'_n(x)| \leq An/\delta_m$
- $|T_n'(x)| \stackrel{=}{\leq} A(n^2/\delta_m e^m + 1/x^2), \quad for \ \lambda \delta_m \stackrel{=}{\leq} |x| \stackrel{\leq}{\leq} \pi, \ \lambda > 1,^2)$ (iv)
- $|T_n^{\prime\prime}(x)| \leq An^2/\delta_m$ for all x,

where A denotes an absolute constant.

Theorem 1. Let $0 < \alpha < 1$ and $0 < \beta < \min(1-\alpha, (2-\alpha)/3)$. If $k^{2/(2-\alpha-3\beta)} < n_{k} < e^{2k/(2+\alpha+\beta)}$.

$$|n_{k+1} - n_k| > 4ekn_k^{\beta}$$

and

(1)
$$\frac{1}{h^{\beta}} \int_{0}^{\beta} |f(t) - f(t \pm h)| dt = O(h^{\alpha}).$$

(1)
$$\frac{1}{h^{\beta}} \int_{0}^{\beta} |f(t) - f(t \pm h)| dt = O(h^{\alpha}),$$
(2)
$$\frac{1}{\tau} \int_{0}^{\tau} |f(t) - f(t \pm h)| dt = O(1), \quad unif. \ in \ \tau \ge h^{\beta},$$

then

(3)
$$a_{n_k} = O(n_k^{-a}), b_{n_k} = O(n_k^{-a}).$$

Lamma 2. Let (δ_m) be a sequence tending to zero and let n= $\lceil 4me^{1-m\delta'_m/\delta_m}/\delta_m \rceil$. Then there exists a trigonometrical polynomial

¹⁾ A denotes an absolute constant which is not the same in different occurrences.

²⁾ λ may be taken as near 1 as we like when m is sufficiently large.