167. Vector-space Valued Functions on Semi-groups. III

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1955)

In this Note, we shall define the Maak function and prove the existence for almost periodic functions. We shall use the terminologies in my Note [5], [7]. The method is due to W. Maak [3].

V. Fundamental theorem on almost periodic function

Let f(x) be an almost periodic function on a semi-group G with unit into a locally convex vector space E. For any nbd U of E, we have a minimal decomposition of G. The following propositions are clear.

Proposition 5.1. For any nbd U and an almost periodic function, G has a minimal decomposition.

Proposition 5.2. Let $\{A_i\}$ i=1, 2, ..., n be a minimal decomposition of G for any almost periodic function, then for a, b of G,

 $A_i \uparrow aGb \neq 0$ $(i=1, 2, \ldots, n).$

(For the details, see W. Maak [3].)

Theorem 12. For an almost periodic function on a semi-group, and any element x of G,

$$f(axb) \in U$$

implies

$$f(x) \in U$$
.

Proof. Let V be a nbd of E, and $\{A_i\}$ a minimal decomposition of G for U. From Proposition 5.2, we can find A_i and h'_i of G such that

$$x \in A_i, \qquad ah'_i b \in A_i.$$

Hence

$$f(x) = \{ f(x) - f(ah'_ib) \} + f(ah'_ib) \in V + U$$

this shows $f(x) \in U$.

From Theorem 12, we have the following

Corollary 12.1. Let f(x) be almost periodic on a semi-group G. For any nbd U, let $\{A_i\}$ be a minimal decomposition of G. Then $a, b \in G$ and $x, y \in A_i$ implies

$$f(axb) - f(ayb) \in U$$

By Proposition 5.2 and Corollary 12.1, we have

Theorem 13. Let f(x) be almost periodic on a semi-group G. For any nbd U, and x, a, b of G, there is an element x' such that $f(cxd)-f(cax'bd) \in U$

for every c, d of G.