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In this Note, we shall define the Maak function and prove the
existence for almost periodic functions. We shall use the termi-
nologies in my Note [5], [7]. The method is due to W. Maak [3].

V. Fundamental theorem on almost periodic function

Let f(x) be an almost periodic function on a semi-group G with
unit into a locally convex vector space E. For any nbd U of E,
we have a minimal decomposition of G. The following propositions
are clear.

Proposition 5.1. For any nbd U and an almost periodic function,
G has a minimal decomposition.

Proposition 5.2. Let {A;} i=1,2,...,n be a minimal decomposi-
tion of G for any almost periodic function, then for a, b of G,

A, ~aGb=0 (1=1,2,...,n).
(For the details, see W. Maak [8].)

Theorem 12. For an almost periodic function on a semi-group,
and any element x of G,

Sflaxby e U
smplies
Sflx) e U.

Proof. Let V be a nbd of E, and {4,} a minimal decomposition
of G for U. From Proposition 5.2, we can find 4, and %; of G such
that

re A, ahlbe A,.
Hence
f@)={f(@)— flakd)} + flahd) e V+U
this shows f(@) e U.

From Theorem 12, we have the following

Corollary 12.1. Let f(x) be almost periodic on a semi-group G.
For any nbd U, let {A;} be a minimal decomposition of G. Then
a,be G and x,y e A, implies

flaxd)— flayb) € U.
By Proposition 5.2 and Corollary 12.1, we have

Theorem 13. Let f(x) be almost periodic on a semi-group G. For
any nbd U, and x, a, b of G, there is an element x' such that

Slexd)— flcax'dd) € U
for every ¢, d of G.



