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1. Evans’s Theorem on Abstract Riemann Surfaces
with Null-Boundaries. I
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G. C. Evans® proved the following

Evans’s theorem. Let F be a closed set of capacity zero in the
3-dimenstonal euclidean space (or z-plane). Then there exists a positive
unit-mass-distribution on F such that the potential engendered by this
distribution has limit o« at every point of F.

Let R* be a null-boundary Riemann surface and let {R,} (=0,
1,2,-..) be its exhaustion with compact relative boundaries {oR,}.
Put R=R*—R, After R. S. Martin,” we introduce ideal boundary
points as follows. Let {p,} be a sequence of points of B tending to
the ideal boundary of R and let {G(z, )} be Green’s function of R
with pole at p,. Let {G(z, »,)} be a subsequence of {G(z, p,)} which
converges to a function G(z, p) uniformly in R. We say that {p;}
determines a Martin’s point p and we make G(z, p) correspond to p.
Furthermore Martin defined the distance between two points p, and
p, of R or of the boundary by
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It is clear that Martin’s point » coincides with an ordinary point
when p € R and that if pi—&p,” G(z, p,) > G(z, p) uniformly in B. In
the following, we denote by R * the sum of R and the set B of all

ideal boundary points of Martin. Let » be a point of E and let VD)
be the domain of R such that ¢[G(z, p)=m]. Then

Lemma 1. f —-ag(—zi—@f—ds:Zvr: 5 m = 0.
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Proof. Let p:liﬁm D: peB, p,eR. Then D [G(,p)]=2mm
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3) In this paper m means ¢with respect to Martin’s metric *’.

4) The topology induced by this metric restricted in R is homeomorphic to the
original topology and it is clear that B and R are closed and compact.

5) In this article, we denote by 9A the relative boundary of A.



