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6. Furthermore we can improve Theorem 6, in the following
form:
Theorem 7. If
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(2) Zof (f(t+u)—-f(t—u))du:o<1/logz>, as h—0

uniformly for all t, then the Fourier series of f(t) converges at x.
In other words the condition in Theorem 6
[nl
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is replaced by (1). ’
Proof. We put
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Then by integration by parts
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and hence, on account of (2), the absolute value of I is not greater

than
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where @,(t)= f tgow(u)duzo(t) as n—> oo (0t<mw/n).

In order to evaluate J we now put (cf. [4])
7= [T puty B dt= g, 7,
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where
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