24. Uniform Convergence of Fourier Series. VI

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Feb. 13, 1956)

6. Furthermore we can improve Theorem 6, in the following form:

Theorem 7. If

(1)
$$\int_{0}^{|h|} (f(x+u)-f(x))du = o(|h|), \text{ as } h \to 0$$

for a fixed x, and

(2)
$$\frac{1}{h} \int_{0}^{h} (f(t+u) - f(t-u)) du = o\left(1/\log\frac{1}{h}\right), \text{ as } h \to 0$$

uniformly for all t, then the Fourier series of f(t) converges at x.

In other words the condition in Theorem 6

$$\int_{0}^{|h|} f(x+u) - f(x)|du = o(|h|)$$

is replaced by (1).

Proof. We put

$$egin{split} s_n(x) - f(x) &= rac{1}{\pi} \int_0^\pi arphi_x(t) rac{\sin nt}{t} \, dt + o(1) = rac{1}{\pi} \Big[\int_0^{\pi/n} + \int_{\pi/n}^\pi \Big] + o(1) \ &= rac{1}{\pi} [I + J] + o(1). \end{split}$$

Then by integration by parts

$$I = \int_{0}^{\pi/n} \varphi_x(t) \left(\frac{\sin nt}{t^2} - \frac{n\cos nt}{t} \right) dt,$$

and hence, on account of (2), the absolute value of I is not greater than

$$2n\int_{0}^{\pi/n}|\boldsymbol{\varPhi}_{\boldsymbol{x}}(t)|\frac{dt}{t}=o\Big(n\int_{0}^{\pi/n}dt\Big)=o(1),$$

where $\Phi_x(t) = \int_0^t \varphi_x(u) du = o(t)$ as $n \to \infty$ $(0 \le t \le \pi/n)$.

In order to evaluate J we now put (cf. [4])

$$J = \int_{-\infty}^{\pi} \varphi_x(t) \frac{\sin nt}{t} dt = J_1 - J_2,$$

where

$$\begin{split} J_1 &= \sum_{k=1}^{(n-1)/2} \int_0^{\pi/n} \frac{\varphi_x(t+2k\pi/n) - \varphi_x(t+(2k-1)\pi/n)}{t+2k\pi/n} \sin nt \ dt, \\ J_2 &= \sum_{k=1}^{(n-1)/2} \int_0^{\pi/n} \varphi_x(t+(2k-1)\pi/n) \Big(\frac{1}{t+2k\pi/n} - \frac{1}{t+(2k-1)\pi/n} \Big) \sin nt \ dt, \end{split}$$