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1. In the preceding paper [1], we have proved the following
Theorem 1. If p=2>1, ¢e>0 and
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then the series
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converges almost everywhere, where s,(x) denotes the nth partial sum
of the Fourier series of f(x).

We shall here consider the case A=1 and in fact prove the
following

Theorem 2.2 If f(x) is differentiable almost everywhere and

i ’ ’ » 1/p 1 8
(1) <[ | f(@+t)—f(x—1)] dx) éA/OOg_{)
where p>1 and B>1, then the series
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converges almost everywhere.
More generally, the condition (1) may be replaced by
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The method of proof is0 similar to that of [1].

2. For the proof of Theorem 2 we need a lemma due to
A. Zygmund [2]:
Lemma. Suppose that p>1 and

n
> 7,6 ‘ =C
»

y=m

where || ||, denotes the LP-norm and suppose that
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1) In [1], it is written that p=1=1, but the case 1=1 is trivial. The assump-
tion that ¢ f(t) is of the power series type’’, and its foot-note are superfluous.

2) G. Sunouchi and T. Tsuchikura remarked the author that the case p=2is
equivalent to a theorem of Tsuchikura [4].



