38. A Theorem of Dimension Theory

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., March 12, 1956)

Recently a dimension theory for general metric spaces has been established by M. Katětov and K. Morita.¹⁾ The purpose of this note is to study some necessary and sufficient conditions for n dimensionality of general metric spaces. In the present note we take the definition of dimension by H. Lebesgue or that by M. Katětov and K. Morita as the same: dim $R=-1$ for $R=\phi$, dim $R\leq n$ if and only if for any pair of a closed set F and an open set G with $F \subseteq G$ there exists an open set U such that $F \subseteq U \subseteq G$, dim $B(U)$ $\leq n-1.25$

Definition. For two collections it, it' of open sets we denote by $U \subset U'$ the fact that $U \subseteq U'$ for every $U \in \mathbb{I}$ and for some $U' \in \mathbb{I}'$.

Definition. We mean by a *disjoint collection* a collection it of a sets such that $U, U' \in \mathcal{U}$ and $U \neq U'$ imply $U \cap U' = \phi$. open sets such that $U, U' \in \mathbb{U}$ and $U \neq U'$

Theorem 1. In order that dim $R \leq n$ for a metric space R it is necessary and sufficient that there exist $n+1$ sequences $\mathbb{1}_1^i > \mathbb{1}_2^i > \cdots$ $(i=1, 2, \dots, n+1)$ of disjoint collections such that $\{1\}_{n=1}^{i}$, $i=1, \dots, n+1$; $m=1, 2, \dots$ is an open basis of R.

Proof. If dim $R=0$,³⁾ then from M there exists a sequence $(m=1,2,\dots)$ of locally finite coverings consisting of open, closed sets such that $S(p, \mathfrak{B}_m)$ $(m=1, 2, \cdots)^{4}$ is a nbd (=neighbourhood) basis sets such that $S(p, \mathcal{X}_m)$ $(m=1, 2, \dots)^{r}$ is a nod (=neighbourhood) basis of each point p of R. For $\mathcal{X}_m = \{V_\alpha \mid \alpha < \tau\}$ we define $\mathcal{X}_m' = \{V_\alpha - \bigvee_{\beta < \alpha} V_\beta \mid \alpha < \tau\}$ and $\mathcal{U}_1 = \mathcal{X}_1'$, $\mathcal{U}_2 = \mathcal{U}_1 \w$ $\alpha < \tau$ } and $\mathfrak{U}_1 = \mathfrak{B}'_1$, $\mathfrak{U}_2 = \mathfrak{U}_1 \wedge \mathfrak{B}'_2$, $\mathfrak{U}_3 = \mathfrak{U}_2 \wedge \mathfrak{B}'_3$, \cdots Then $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ is a sequence of disjoint collections, and $\{\mathfrak{U}_m | m = 1, 2, \cdots\}$ is an open a sequence of disjoint collections, and $\{\mathfrak{U}_m \mid m=1, 2, \cdots\}$ is an open basis of R.

Conversely, if there exists a sequence $ll_1>ll_2>\cdots$ of disjoint

1) M. Katětov: On the dimension of non-separable spaces. I, Czechoslovak Mathematical Journal, 2 (77), (1952). K. Morita: Normal families and dimension theory for metric spaces, Math. Annalen, 128 (1954); A condition for the metrizability of topological spaces and for n-dimensionality, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, S, No. 114 (1955).

2) $B(U)$ denotes the boundary of U. See K. Morita: Normal families and dimension theory for metric spaces; from now forth we call this paper M.

3) From now forth we assume $R+\phi$.

4) In this note we concern ourselves only with open coverings. We call \mathcal{R} a locally finite covering if every point of R has some neighbourhood intersecting only finitely many elements of \mathcal{R} . $S(A,\mathcal{R})=\mathcal{C}{V|V\in\mathcal{R}, V\subset A\neq\emptyset}$ for $A\subseteq R$. Notations of this paper are chiefly due to J. W. Tukey: Convergence and uniformity in topology (1940).