38. A Theorem of Dimension Theory

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., March 12, 1956)

Recently a dimension theory for general metric spaces has been established by M. Katětov and K. Morita.¹⁾ The purpose of this note is to study some necessary and sufficient conditions for *n*dimensionality of general metric spaces. In the present note we take the definition of dimension by H. Lebesgue or that by M. Katětov and K. Morita as the same: dim R=-1 for $R=\phi$, dim $R\leq n$ if and only if for any pair of a closed set F and an open set G with $F\subseteq G$ there exists an open set U such that $F\subseteq U\subseteq G$, dim B(U) $\leq n-1.^{2}$

Definition. For two collections $\mathfrak{U}, \mathfrak{U}'$ of open sets we denote by $\mathfrak{U} < \mathfrak{U}'$ the fact that $U \subseteq U'$ for every $U \in \mathfrak{U}$ and for some $U' \in \mathfrak{U}'$.

Definition. We mean by a disjoint collection a collection \mathbb{I} of open sets such that $U, U' \in \mathbb{I}$ and $U \neq U'$ imply $U \cap U' = \phi$.

Theorem 1. In order that dim $R \leq n$ for a metric space R it is necessary and sufficient that there exist n+1 sequences $\mathbb{U}_1^i > \mathbb{U}_2^i > \cdots$ $(i=1, 2, \cdots, n+1)$ of disjoint collections such that $\{\mathbb{U}_m^i | i=1, \cdots, n+1;$ $m=1, 2, \cdots\}$ is an open basis of R.

Proof. If dim R=0,³⁾ then from M there exists a sequence \mathfrak{V}_m $(m=1,2,\cdots)$ of locally finite coverings consisting of open, closed sets such that $S(p, \mathfrak{V}_m)$ $(m=1, 2, \cdots)^{4)}$ is a nbd (=neighbourhood) basis of each point p of R. For $\mathfrak{V}_m = \{V_a \mid \alpha < \tau\}$ we define $\mathfrak{V}'_m = \{V_a - \bigvee_{\beta < a} V_{\beta} \mid \alpha < \tau\}$ and $\mathfrak{U}_1 = \mathfrak{V}'_1$, $\mathfrak{U}_2 = \mathfrak{U}_1 \land \mathfrak{V}'_2$, $\mathfrak{U}_3 = \mathfrak{U}_2 \land \mathfrak{V}'_3$, \cdots . Then $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ is a sequence of disjoint collections, and $\{\mathfrak{U}_m \mid m=1, 2, \cdots\}$ is an open basis of R.

Conversely, if there exists a sequence $\mathfrak{ll}_1 > \mathfrak{ll}_2 > \cdots$ of disjoint

1) M. Katětov: On the dimension of non-separable spaces. I, Czechoslovak Mathematical Journal, **2** (77), (1952). K. Morita: Normal families and dimension theory for metric spaces, Math. Annalen, **128** (1954); A condition for the metrizability of topological spaces and for *n*-dimensionality, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, **5**, No. 114 (1955).

2) B(U) denotes the boundary of U. See K. Morita: Normal families and dimension theory for metric spaces; from now forth we call this paper M.

3) From now forth we assume $R \neq \phi$.

4) In this note we concern ourselves only with open coverings. We call \mathfrak{B} a locally finite covering if every point of R has some neighbourhood intersecting only finitely many elements of \mathfrak{B} . $S(A,\mathfrak{B}) = \smile \{V | V \in \mathfrak{B}, V \land A \neq \phi\}$ for $A \subseteq R$. Notations of this paper are chiefly due to J. W. Tukey: Convergence and uniformity in topology (1940).