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In this note we show that main results concerning semi-reducibility
of Baire (Borel) measures, which have been proved by Marczewski and
Siorski in metric spaces, and by Kat6tov [4, Theorem 1 and the
present author 3, Theorem 4_] in paracompact spaces, are valid in
completely regular space with a complete structure. The case of
two-valued measures has already been considered by Shirota 6,
hough his reul is related o Q-space of Hewitt [1. We use he
same notations as in he previous paper 3_]" *(X)-all of Baire
subsets in a T-space X, C(X, R)-all of real-valued continuous func-
tions on X,P(f)-- {x[f(x)>O, f C(X,R)}, (X)- {P(f)lf C(X,R)}.

All spaces considered are completely regular spaces and all
measures considered are finite measures, unless the contrary is ex-
plicitly staed.

Lerama 1. If any closed discrete subset in a Tl-space X has the
power of (two-valued) measure O, then for any (two-valued) Baire
measure in X, the union of a discrete collection of open subsets
{G G 3(X), (G)--..0} has also -measure O.

Since he proof is essentially sated in the previous paper 3,
Theorem 4], we do not repeat it here.

Lemma 2. Le$ lI U e A} be a normal covering of a T-space
X. Then $here exists a refinement - {Gna e A, n-- 1, 2,... of lI
such $hag G e A} is a discrege collecgion wigh G e (X) for
each n.

Proof. Let lt-{U[ e A} be a normal covering of X and let

{lI} be a normal sequence such that lt>lI>... :>lI>.... Then,
as Stone [7 has showed, there exists a cloed covering {F1 e A,
n-l, 2,... satisCying he ollowing conditions:

i)
ii) {’F I e A} is a discrete collection for each n,

1) A measure z defined on a a-field containing Baire family in a T-space is
called semi-reducible if there exists a closed subset Q such that (1) z(G)>0 holds if
G is open, Ge, G-,Q-, and (2) z(F)=O holds if F is closed, Fe, FQ=.

2) A discrete set is called to have the power of (two,valued) measure 0, if every
(two-valued) measure, defined for aI1 subsets and vanishing for all one point, vanishes
identically.

3) A collection {HIeA} of subsets of a T-space is called discrete if (1) the

closures Ha are mutually disjoint, (2) eBH is closed for any subset B of A.


