91. A Theorem on Paracompact Spaces

By Kiyoshi ISÉKI and Yasue MIYANAGA (Comm. by K. KUNUGI, M.J.A., June 12, 1956)

Recently, K. Fujiwara [3] and K. Iséki [4] have shown that some properties on compact spaces are generalized very naturally to uniform spaces having Lebesgue property. In this paper, we shall extend a theorem of I. Gelfand and G. Silov [5] to paracompact space.

Let *M* be a metric space with metric ρ , and let f(x) be a function defined on *M*. For a point $x \in M$, we shall define the oscillation of the function f(x) at the point *x*. By $\omega(x, \varepsilon)$, we denote the least upper bound of $\rho(f(p), f(q))$ for $p, q S(x, \varepsilon)$, where $S(x, \varepsilon)$ is the sphere with center at *x* and radius ε . Then $\lim_{\varepsilon \to 0} \omega(x, \varepsilon) (=\omega(x))$ exists and this limit is called the oscillation of the function f(x) at the point *x*.

It is well known that a function f(x) defined on a metric space is continuous at a point x, if and only if the oscillation of f(x) at x is equal to zero (see W. Sierpiński [6], p. 184).

I. Gelfand and G. Silov [5] proved the following proposition. Let $\varphi(x)$ be a function defined on a compact set M in n-dimensional Euclidean space \mathbb{R}^n , and let $\omega(x) \leq \varepsilon$ for every point $x \in M$, then, there is a continuous function f(x) on M such that $|f(x) - \varphi(x)| \leq 2\varepsilon$.

We shall extend the proposition by I. Gelfand and G. Silov to more general topological space. First of all, suppose that M is a compact metric space. By the compactness of M, we can find a positive number η such that $\rho(x', x'') < \eta$ implies $|\varphi(x') - \varphi(x'')| \le 2\varepsilon$. The open covering $\{S(x, \eta) | x \in M\}$ of M has a finite covering $S(x_1, \eta), \dots,$ $S(x_n, \eta)$. Since M is a normal space, for the finite number of the open sets $S(x_i, \eta)$ $(i=1, 2, \dots, n)$, there is such a decomposition $\lambda_i(x)$ $(i=1, 2, \dots, n)$ of unity that

(1) each $\lambda_i(x)$ is a non-negative, continuous function on M,

(2) $1=\sum_{i=1}^n \lambda_i(x)$ for every x of M,

(3) $\lambda_i(x) = 0$ on $M - S(x_i, \eta)$ $(i=1, 2, \dots, n)$.

(See N. Bourbaki [2], p. 66.) To define a continuous function f(x), let $f(x_i) = \varphi(x_i)$ and

$$f(x) = \sum_{i=1}^n \lambda_i(x) f(x_i),$$

then f(x) is continuous on M. For any x of M, there is an open sphere $S(x_i, \eta)$ containing x_i .