676 [Vol. 32,

155. A Characterisation of Regular Semi-group

By Kiyoshi Iséki

(Comm. by K. Kunugi, M.J.A., Nov. 12, 1956)

The concept of regular ring was introduced by J. v. Neumann [3]. Recently, L. Kovács [1] has given an interesting characterisation of regular ring. On the other hand, some writers studied regular semi-groups. In this short Note, we shall give a characterisation for regular semi-group which is similar to Theorem 1 of L. Kovács [1].

Following W. D. Munn and R. Penrose [2], we define a regular semi-group. A semi-group is said to be regular if for any given element a of S there is at least one element x of S such that axa=a. A non empty subset L of S is said to be a left ideal if $SL \subset L$. Similarly we define right ideals. Then we have the following

Theorem 1. Any semi-group S is regular if and only if

$$AB=A \cap B$$

for every right ideal A and every left ideal B of S.

Proof. Let S be a regular semi-group, and let $a \in A \cap B$, then there is an element x such that axa = a. Since B is a left ideal, $xa \in B$. Therefore $a = a(xa) \in AB$. This shows $AB \supseteq A \cap B$. Clearly $AB \subseteq A \cap B$. Hence $AB = A \cap B$.

To prove the converse, let a be an element of S. Then $\{ax \mid x \in S\} \smile a$ is the right ideal (a) of S generated by a. By the hypothesis,

$$(a)=(a) \cap S=(a)S=aS$$
.

Therefore, we have $a \in aS$. Similarly $a \in Sa$. Hence

$$a \in aR \cap Ra = aR^2a$$
.

and there is an element x such that a=axa.

Now, let us suppose that a given regular semi-group S is commutative, then, by Theorem 1, any ideal A in S is idempotent, i.e. $A^2 = A$. Conversely, suppose that every ideal in a commutative semi-group S is idempotent. If A and B are ideals in S, then we have $A \cap B = (A \cap B)^2 = (A \cap B)(A \cap B) \subset AB$. On the other hand, $A \cap B \supset AB$. Hence $A \cap B = AB$. By Theorem 1, S is regular, therefore we have the following

Theorem 2. A commutative semi-group is regular if and only if every ideal is idempotent.

From Theorem 2, it is easily seen that there is no non-zero nilpotent element in a commutative regular semi-group with 0.

Corollary. Any commutative regular semi-group with 0 does not