164. On the Cut Operation in Gentzen Calculi

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Dec. 13, 1956)

By Gentzen's LK system, we shall mean a formal system with the following schemata:

Axiom schema

 $\mathfrak{A} \to \mathfrak{A}$

Logical rules of inferences

	in succedent	in antecedent
\supset -	$\mathfrak{A}, \Gamma \rightarrow \theta, \mathfrak{B}$	$\Gamma \rightarrow \theta, \mathfrak{A} \mathfrak{B}, \Gamma \rightarrow \theta$
	$\Gamma \rightarrow \theta, \mathfrak{A} \supset \mathfrak{B}$	$\mathfrak{A} \supset \mathfrak{B}, \ \Gamma \to \theta$
& -	$\Gamma \rightarrow \theta, \mathfrak{A} \Gamma \rightarrow \theta, \mathfrak{B}$	$\mathfrak{A}, \ \Gamma \to \theta \qquad \mathfrak{B}, \ \Gamma \to \theta$
	$\Gamma \rightarrow \theta, \mathfrak{A \& B}$	$\mathfrak{A\&B, } \Gamma \to \theta \mathfrak{A\&B, } \Gamma \to \theta$
V	$\Gamma \to \theta, \mathfrak{A} \qquad \Gamma \to \theta, \mathfrak{B}$	$\mathfrak{A}, \Gamma \rightarrow \theta \mathfrak{B}, \Gamma \rightarrow \theta$
	$\Gamma \to \theta, \mathfrak{A} \lor \mathfrak{B} \Gamma \to \theta, \mathfrak{A} \lor \mathfrak{A}$	$\mathfrak{B} \qquad \mathfrak{A} \lor \mathfrak{B}, \Gamma \to \theta$
ן ן	$\mathfrak{A}, \Gamma \rightarrow \theta$	$\Gamma \rightarrow \theta, \mathfrak{A}$
	$\Gamma \rightarrow \theta$, $\exists \mathfrak{A}$	$\exists \mathfrak{A}, \ \Gamma \to \theta$
V	$\Gamma \rightarrow \theta, \mathfrak{A}(a)$	$\mathfrak{A}(t), \Gamma \rightarrow \theta$
	$\Gamma \rightarrow \theta, \forall x \mathfrak{A}(x)$	$Vx\mathfrak{A}(x), \Gamma \rightarrow \theta$
E	$\Gamma \rightarrow heta$, $\mathfrak{A}(t)$	$\mathfrak{A}(a), \Gamma \rightarrow \theta$
	$\Gamma \rightarrow \theta, \mathcal{I} x \mathfrak{A}(x)$	$\exists x\mathfrak{A}(x), \Gamma ightarrow \theta$
Structural rules of inferences		
	in succedent	in antecedent
Thinning	$\Gamma \rightarrow \theta$	$\Gamma \rightarrow \theta$
	$\Gamma \rightarrow \theta$, \mathfrak{A}	$\mathfrak{A}, \Gamma \rightarrow \theta$
Contraction	$\Gamma \to \theta, \mathfrak{A}, \mathfrak{A}$	$\mathfrak{A}, \mathfrak{A}, \Gamma \rightarrow \theta$
	$\Gamma \rightarrow \theta, \mathfrak{A}$	$\mathfrak{A}, \Gamma \rightarrow \theta$
Interchange	$re \qquad \underline{\Gamma \to \Lambda, \mathfrak{A}, \mathfrak{B}, \theta}$	$\Gamma, \mathfrak{A}, \mathfrak{B}, \theta \rightarrow \Lambda$
	$\Gamma \rightarrow \Lambda, \mathfrak{B}, \mathfrak{A}, \theta$	$\Gamma, \mathfrak{B}, \mathfrak{A}, \theta \rightarrow \Lambda$
Cut	$\varDelta \rightarrow \Lambda, \mathfrak{A}$	$\mathfrak{A}, \Gamma \rightarrow \theta$
	$\varDelta, \Gamma \rightarrow \Lambda, \theta$.	

In the above schemata, $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \cdots$ are arbitrary formulae, a, b, c, \cdots are free variables and s, t, \cdots are terms. $\Gamma, \Delta, \theta, \cdots$ are arbitrary finite sequences of zero or more formulae. For the detail on the schemata, see G. Gentzen [1], S. C. Kleene [2, 3].

In his papers, G. Gentzen [1] proved a principal theorem: any provable proposition in LK-system is provable without cut. And he observed that the cut is equivalent to the mix rule: let \mathfrak{A} be a formula,