65. On Weakly Compact Regular Spaces. I

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., May 15, 1957)

In their paper [3], S. Mardešić and P. Papić introduced a new kind of space, weakly compact topological space.

Definition. A topological space S is called *weakly compact*, if any family of disjoint non-empty open sets has at least one point of accumulation. S. Mardešić and P. Papić proved the following interesting proposition: A regular space is weakly compact if and only if any open countable covering has the AU property in the sense of present writer.

The proposition gives some elementary properties of a weakly compact regular space, which are analogous for the case of an absolute closed space (cf. M. Katětov [1]).

Theorem 1. A necessary and sufficient condition that a regular space S be weakly compact is that for every family of countable open sets G_n $(n=1, 2, \dots)$ of S having the finite intersection property the intersection of all \overline{G}_n is non-empty.

Proof. To prove the necessity of Theorem 1, let G_n be a given family of countable open sets having the finite intersection property. Suppose that $\bigcap_{n=1}^{\infty} \overline{G}_n = \phi$, then $S = S - \bigcap_{n=1}^{\infty} \overline{G}_n = \bigcup_{n=1}^{\infty} (S - \overline{G}_n)$ and $S - \overline{G}_n$ $(n = 1, 2, \cdots)$ is an open covering of S. Hence we can find an index N such that $\bigcup_{n=1}^{N} \overline{S - G_n} = S$.

Since each G_n is open, we have $\bigcap_{n=1}^{N} G_n = 0$ which is a contradiction. Conversely, let O_n $(n=1, 2, \cdots)$ be disjoint non-empty open sets. Let $G_n = \bigcup_{k=n}^{\infty} O_k$, then $\{G_n\}$ has the finite intersection property. Hence $\bigcap_{n=1}^{\infty} \overline{G}_n \neq \phi$. For p of $\bigcap_{n=1}^{\infty} G_n$, any neighbourhood V(p) of p meets each G_n $(n=1, 2, \cdots)$. Therefore V(p) meets infinitely many of O_n . Q.E.D.

Let S be a weakly compact regular space, and suppose that $\{F_n\}$ be a decreasing sequence of closed sets such that $\operatorname{Int} F_n \neq \phi$, where $\operatorname{Int} F$ is the interior of F. Then $\operatorname{Int} F_n$ are non-empty open sets having the finite intersection property, and $F_n \supset \operatorname{Int} F_n$ for each n.