85. On the Completion of the Ranked Spaces

By Hatsuo Okano

(Comm. by K. KUNUGI, M.J.A., June 12, 1957)

1. In this note we shall consider the problem of completion:¹⁾ construction of a complete ranked space²⁾ containing a given ranked space as a dense subspace.

Definition 1. Let R be a ranked space.³⁾ For a family F of fundamental sequences of R, we shall call a coordinate of F every neighbourhood v(p) which is the first term of a fundamental sequence belonging to F. For two families F, G of fundamental sequences, $F \ge G$ means that, for every coordinate v(p) of F, there exists a coordinate u(q) of G such that $v(p) \supseteq u(q)$.

Definition 2. For a point p of R, $\mathfrak{S}(p)$ denotes the set of all fundamental sequences $u = \{u_a(p_a)\}$ such that $p_a \equiv p$. Let R^* be the family of all families p^* of fundamental sequences satisfying the following conditions:

(1) If $u_{\alpha} = \{u_{\beta}^{\alpha}(p_{\beta}^{\alpha}); 0 \le \beta < \omega_{\mu_{\alpha}}\} \ (0 \le \alpha < \gamma < \omega_{\gamma}) \text{ belongs to } p^{*} \text{ and } \lambda_{\alpha}(0 \le \lambda_{\alpha} < \omega_{\mu_{\alpha}}) \text{ is an ordinal number, then there exists a member } u = \{u_{\beta}(p_{\beta})\} \text{ of } p^{*} \text{ such that } u_{0}(p_{0}) \subseteq \bigcap u_{\lambda_{\alpha}}^{\alpha}(p_{\lambda_{\alpha}}^{*}).$

(2) If $u = \{u_{\alpha}(p_{\alpha})\}, v = \{v_{\beta}(q_{\beta})\} \in p^*, u_0(p_0) \in \mathfrak{B}_{\tau_0}, v_0(q_0) \in \mathfrak{B}_{\tau'_0}, \gamma_0 < \gamma'_0 \text{ and } u_0(p_0) \supseteq v_0(q_0), \text{ then there exist a rank } \gamma \text{ and } u(p_0) \text{ of rank } \gamma \text{ such that } \gamma_0 < \gamma \leq \gamma' \text{ and } u_0(p_0) \supseteq u(p_0) \supseteq v_0(q_0).$

(3) $p^* \geq \mathfrak{S}(p)$ for any p except the case $p^* = \mathfrak{S}(p)$.

Then we obtain easily the following

Lemma 1. $\mathfrak{S}(p)$ satisfies the conditions (1) and (2). And, for an ω_{ν} -fundamental sequence $v = \{v_{\alpha}(p_{\alpha}); 0 \le \alpha < \omega_{\nu}\}$, let v^{β} denote the fundamental sequence $\{v_{\alpha}(p_{\alpha}); \beta \le \alpha < \omega_{\nu}\}$ and v^{*} the set of such v^{β} , $0 \le \beta < \omega_{\nu}$. Then v^{*} satisfies the conditions (1) and (2).

Definition 3. For two members p^* , q^* of R^* , put $p^* \approx q^*$ if $p^* \ge q^*$ and $p^* \le q^*$. By this equivalence relation, we shall classify R^* and denote this classification by \hat{R} . Let $W(V, \hat{p})$, where \hat{p} is a point of \hat{R} and V is a coordinate of some p^* belonging to \hat{p} , denote the set of all

¹⁾ Prof. K. Kunugi studied this problem in the notes "Sur les espaces complets et régulièrement complets. I-III", Proc. Japan Acad., **30**, 553-556, 912-916 (1954); **31**, 49-53 (1955).

²⁾ See, for the notions and the terminologies, K. Kunugi, I., *Op. cit.*, H. Okano: Some operations on the ranked spaces. I, Proc. Japan Acad., **33**, 172–176 (1957) and H. Okano: On closed subspaces of the complete ranked spaces, Proc. Japan Acad., **33**, 336–337 (1957).

³⁾ The rank of R is given by ω_{ν} . See K. Kunugi, I., Op. cit.