81. On Closed Mappings. II

By Kiiti Morita

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., June 12, 1957)

1. A topological space is said to be locally peripherally compact or semicompact (=semibicompact) if every point has arbitrarily small open neighbourhoods with compact boundaries. The purpose of this note is to establish the following theorems.

Theorem 1. Let f be a quasi-compact continuous mapping of a locally peripherally compact Hausdorff space X onto a Hausdorff space Y such that, for each point y of Y, the inverse image $f^{-1}(y)$ is connected and the boundary $\mathfrak{B}f^{-1}(y)$ of $f^{-1}(y)$ is compact. Then f is a closed mapping and Y is locally peripherally compact.

Theorem 2. Let f be a closed continuous mapping of a locally peripherally compact Hausdorff space X onto a locally peripherally compact Hausdorff space Y such that $\mathfrak{B}f^{-1}(y)$ is compact for each point y of Y. Then f can be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$, where $\gamma(X)$ and $\gamma(Y)$ mean the Freudenthal compactifications of X and Y respectively.^{*)}

Our Theorem 1 generalizes a theorem of A. H. Stone [6, Theorem 2] as well as a theorem of S. Hanai [2, Theorem 3].

2. Proof of Theorem 1. Let X be a locally peripherally compact Hausdorff space. A finite open covering $\{G_1, \dots, G_r\}$ of X is called a γ -covering of X if $\mathfrak{B}G_i$ is compact for each *i*. Let $\{\mathfrak{U}_{\lambda} \mid \lambda \in \Lambda\}$ be the totality of all the γ -coverings of X. Then the following propositions are proved in our previous paper [3].

(1) For any two γ -coverings \mathfrak{U}_{λ} and \mathfrak{U}_{μ} there exists a γ -covering \mathfrak{U}_{ν} which is a refinement of \mathfrak{U}_{λ} and \mathfrak{U}_{μ} .

(2) For any γ -covering \mathfrak{U}_{λ} there exists a γ -covering \mathfrak{U}_{μ} which is a star-refinement of \mathfrak{U}_{λ} .

(3) For each point x of X, $\{S(x, \mathfrak{U}_{\lambda}) | \lambda \in A\}$ is a basis of neighbourhoods of x.

Now let f be a quasi-compact continuous mapping of X onto a Hausdorff space Y such that, for each point y of Y, $f^{-1}(y)$ is connected and $\mathfrak{B}f^{-1}(y)$ is compact. Let y_0 be any point of Y and let G be any open set of X containing $f^{-1}(y_0)$. Since $\mathfrak{B}f^{-1}(y_0)$ is compact and X is locally peripherally compact, there exist a finite number of open sets H_i , $i=1,\cdots,m$, of X such that $\mathfrak{B}H_i$ is compact and $H_i \subset G$ for each i, and that $\mathfrak{B}f^{-1}(y_0) \subset \{H_i \mid i=1,\cdots,m\}$. Let $G_0 = [\subseteq \{H_i \mid$

^{*)} As for the Freudenthal compactifications, cf. [3].