77. Note on Orlicz-Birnbaum-Amemiya's Theorem

By Tetsuya Shimogaki

Mathematical Institute, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., June 12, 1957)

W. Orlicz and Z. Birnbaum proved in [2] that an Orlicz space $L_{\mathfrak{g}}(G)$ is finite if and only if the function \mathcal{P} satisfies the following condition for some $\gamma > 0$:

$$arPhi(2t){\leq}\gamma arPhi(t) \qquad ext{for every} \quad t{\geq}t_{\scriptscriptstyle 0}.$$

(In case of $mes(G) = +\infty$, $\Phi(2t) \leq \gamma \Phi(t)$ for all $t \geq 0$.)

This fact was generalized for arbitrary monotone complete modulars¹⁾ on non-discrete spaces by I. Amemiya in [1] recently. In this note we shall show a new simple proof to this Amemiya's theorem.

As for an Orlicz-sequence space l_{σ} , W. Orlicz and Z. Birnbaum also proved in [2] that l_{σ} is finite if and only if the function φ satisfies the following condition for some $\gamma > 0$:

We shall generalize this fact on arbitrary modulars on discrete spaces.

§1. Let R be a universally continuous semi-ordered space and m be a modular on R. A modular is said to be "finite", if $m(x) < +\infty$ for every $x \in R$. And a modular on R is said to be "semi-upper bounded", if for every $\varepsilon > 0$ there exists γ_{ε} ($\gamma_{\varepsilon} > 0$) such that $m(x) \ge \varepsilon$ implies $m(2x) \le \gamma_{\varepsilon} m(x)$. Now we shall prove

Theorem 1 (I. Amemiya). Suppose that R has no atomic element, then every monotone complete finite modular on R is semi-upper bounded.

Proof. We shall prove first that there exists γ_1 such that $m(x) \ge 1$ implies $m(2x) \le \gamma_1 m(x)$. If such γ_1 can not be found, then we can find a sequence of elements $0 \le x_{\nu} \in R$ ($\nu = 1, 2, \cdots$) such that

(1) $m(2x_{\nu}) > \nu 2^{\nu+1} m(x_{\nu}), N_{\nu} \leq m(x_{\nu}) \leq N_{\nu}+1 \quad (\nu=1, 2, \cdots),$ where $N_{\nu} \quad (\nu \geq 1)$ is a natural number.

(1) implies immediately

(2) $m(2x_{\nu}) > \nu 2^{\nu}(N_{\nu}+1) \quad (\nu=1, 2, \cdots).$

Since R has no atomic element, x_{ν} can be decomposed orthogonally as $x_{\nu} = \sum_{\mu=1}^{(N_{\nu}+1)2^{\nu}} x_{\nu,\mu}$, $m(x_{\nu,\mu}) = m(x_{\nu,\rho})$ $(\mu, \rho=1, 2, \cdots, (N_{\nu}+1)2^{\nu})$ for every $\nu \ge 1$. As $m(x_{\nu}) < N_{\nu}+1$, we have $m(x_{\nu,\mu}) \le \frac{1}{2^{\nu}}$ for every $1 \le \mu \le 2^{\nu}(N_{\nu}+1)$.

¹⁾ For the definition of the modular see H. Nakano [3]. A modular *m* is said to be monotone complete, if $0 \leq a_{\lambda} \uparrow_{\lambda \in A}$, $\sup_{\lambda \in A} m(a_{\lambda}) < +\infty$ implies the existence of $\bigcup_{\lambda \in A} a_{\lambda}$.