75. Fourier Series. XVII. Order of Partial Sums and Convergence Theorem

By Masako Satô

(Comm. by Z. SUETUNA, M.J.A., June 12, 1957)

1. Introduction. Let f(t) be an integrable function with period 2π and its Fourier series be

(1)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt).$$

By $s_n(x)$ we denote the *n*th partial sum of the Fourier series (1). We put as usual $\varphi_x(t) = f(x+t) + f(x-t)$.

We have proved the following theorems in [1].

Theorem 1. If

(2)
$$\int_0^t \varphi_x(u) \, du = o(t) \quad (t \to 0)$$

and

(3)
$$\int_{0}^{t} (f(\xi+u) - f(\xi-u)) \, du = o(t) \quad (t \to 0)$$

uniformly in ξ in a neighbourhood of x, then $s_n(x) = o(\log n).$

Theorem 2. If

$$(4) \qquad \qquad \int_0^t \varphi_x(u) \, du = o\left(t / \log \frac{1}{t}\right) \quad (t \to 0)$$

and

$$(5) \qquad \int_{0}^{t} (f(\xi+u) - f(\xi-u)) \, du = o\left(t \log \log \frac{1}{t} / \log \frac{1}{t}\right) \quad (t \to 0)$$

uniformly in ξ in a neighbourhood of x, then

$$s_n(x) = o (\log \log n).$$

By the same way as the proof of these theorems, we get the following generalizations.

Theorem 3. Let
$$0 \leq \alpha \leq 1$$
. If
(6) $\int_{0}^{t} \varphi_{x}(u) du = o\left(t\left(\log \frac{1}{t}\right)^{\alpha}\right) \quad (t \to 0)$

and

(7)
$$\int_{0}^{t} (f(\xi+u) - f(\xi-u)) \, du = o\left(t / \left(\log \frac{1}{t}\right)^{1-\alpha}\right) \quad (t \to 0)$$

uniformly in ξ in a neighbourhood of x, then (8) $s_n(x) = o((\log n)^{\alpha}).$

Theorem 4. Let $0 \leq \alpha \leq 1$. If