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1. There are many literatures concerning the Gibbs phenomenon
of partial sums and Cesaro means of Fourier series of functions at
jump points but a few concerning that at the points of discontinuity
of the second kind (see B. Kuttner [1-47], O. Szész [5], S. Izumi

and M. Sat6 [6] and K. Ishiguro [7,8]). In our paper [6] we have
proved

Theorem 1. Suppose that
F&)=a(t—&)+9(t)
where ¥(t) is a periodic function with period 2w such that
Y(t)=(r—1t)/2 (0<t<2m)
and —am2 < lirxtLiEnf fi < lin}iup Jfit) Zamr/2.
If

/ g(& +wydu=o(|t]),
and ’

[ e+ —ga—uwpdu=o(t)

uniformly for all x in a neighbourhood of &, then the Gibbs phenome-
non of f(t) appears at t=E&, and the Gibbs set contains the imterval
[—a(H+1)m/4, a(H+1)m/4].

Theorem 2. There is a function which does not present the Gibbs

phenomenon at t=£& and has t=5& as the second kind discontinuity.
We shall here prove

Theorem 3. If
(1) !h(f(xﬁ—u)——f(x——u))du:o(h/log-]l;), untformly inx,

then the partial sums of Fourier series of f(t) do not present the Gibbs
phenomenon at all points.

Using Theorem 3, we give a simple proof of Theorem 2. Further,
as a particular case, we get the following theorem.

Theorem 4. If f(t) is continuous at a point x (or in an interval
(a, B) or in (0,2m)), and (1) holds, them the Fourier series of f(t)

converges uniformly at x (or in a closed interval contained in (a, 3)
or in (0, 2m)).



