96. Fourier Series. XVIII. On a Sequence of Fourier Coefficients

By Masako Satô

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. Suetuna, M.J.A., July 12, 1957)

1. Let f(t) be an integrable function with period 2π and its Fourier series be

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} A_n(x).$$

Then the derived series is

$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x).$$

L. Fejér [1] (cf. [6, p. 62]) proved that, if l=f(x+0)-f(x-0) exists and is finite, then the sequence $\{nB_n(x)\}$ converges (C,r) (r>1) to l/π . Later many writers treated the Cesàro convergence of the sequence $\{nB_n(x)\}$. Recently B. Singh [2] has proved the following theorem.*)

Theorem. If

$$\int_{0}^{t} \psi_{x}(u) du = o(t), \qquad \psi_{x}(t) = f(x+t) - f(x-t) - l,$$

$$\lim_{\varepsilon \downarrow 0} \int_{0}^{\delta} \frac{\left| \psi_{x}(t+\varepsilon) - \psi_{x}(t) \right|}{t} dt = 0,$$

and

where δ is a fixed positive number, then the sequence $\{nB_n(x)\}$ converges (C, 1) to the value l/π .

We shall prove the following theorems.

Theorem 1. Let $0 \le \alpha \le 1$. If

$$\Psi_x(t) = \int_0^t \psi_x(u) \ du = o\left(t\left(\log\frac{1}{t}\right)^a\right)$$

and

$$\int_0^t (\psi_x(\xi+u)-\psi_x(\xi-u)) du = o\left(t/\left(\log\frac{1}{t}\right)^{1-\alpha}\right)$$

uniformly in ξ , then $\sigma_n(x) - l/\pi = o((\log n)^a)$ where $\sigma_n(x)$ is the nth (C, 1) mean of $\{nB_n(x)\}.$

Theorem 2. Let $0 \le \alpha \le 1$. If

$$\Psi_x(t) = o\left(t\left(\log\log\frac{1}{t}\right)^a\right)$$

and $\int_{-t}^{t} (\psi_{x}(\xi+u) - \psi_{x}(\xi-u)) du = o\left(t\left(\log\log\frac{1}{t}\right)^{\alpha}/\log\frac{1}{t}\right)$

uniformly in ξ , then $\sigma_n(x) - l/\pi = o((\log \log n)^a)$.

^{*)} Concerning the earlier references, see [2-4].