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1. Let f(t) be an integrable function with period 2r and its
Fourier series be

1 ao+ (a cos n+b sin nx) A().
=1 #,=0

Then the derived series is

(bn cos nx-a, sin nx)- Bn(x).

L. Fejr 1] (cf. [6, p. 62) proved that, if 1--f(x+O)--f(x--O)
exists and is finite, then the sequence {riBs(x)} converges (C,
to 1/r. Later many writers treated the Cesro convergence of the

Recently B. Singh 2 has proved the followingsequence {riBs(x)}.
theorem.*

Theorem. If
(u)du--o(t), (t)-- f(x+t)-- f(x--t)--l,

and lim f @(t/)--@(t) dt O,
,o t

where is a fixed positive number, then the sequence [nB(x)} con-
verges (C, 1) to the value 1/rr.

We shall prove the following theorems.
Theorem 1. Let Oal. If

and f+ +(->> a-o(,/(og)-)
uniformly in , then a(x)--l/--o((log n)) where a(x) is the nth
(C, 1) mean of {nB,(x)}.

Theorem 2. Let 0al. If
1

1
t//

ifofml i , the ()--l/-o((log log )).
Concerning the earlier references, see [2-4].


