No. 7]

92. AU-covering Theorem and Compactness

By Kiyoshi Iséki

Kobe University

(Comm. by K. Kunugi, M.J.A., July 12, 1957)

To characterize a countably compact normal space, the present author introduced the concept of AU-property of covering [2-7]. In this paper, we shall discuss the AU-covering theorem of a topological space.

Let S be a topological space, and let \mathcal{O} be an open covering of S. By $\overline{\mathcal{O}}$, we denote the power of the set of elements of \mathcal{O} . A covering \mathcal{O} is said to be AU-reducible, if it contains a subfamily ψ of lower power than $\overline{\mathcal{O}}$ such that the union of the closures of elements of ψ is S, otherwise it is AU-irreducible.

For our discussion, we shall use some classical concepts which were introduced by E. W. Chittenden [1].

A covering Φ with power \aleph_{μ} is normal, if it can be well-ordered in the form

$$O_1, O_2, \cdots, O_{\alpha}, \cdots \qquad (\alpha < \omega_{\mu})$$

where ω_{μ} is the initial ordinal of \aleph_{μ} and, for each α , there is an element p_{α} such that $p_{\alpha} \in \overline{O}_{\alpha}$ and $p_{\alpha} \in \overline{O}_{\beta}$ ($\beta < \alpha$). The set $\{p_{\alpha} \mid \alpha < \omega_{\mu}\}$ is said to be an associate set of the normal covering Φ . It is clear that every normal covering is AU-irreducible. Now we shall prove the following fundamental

Theorem 1. Every open covering Φ contains a normal covering. Proof. Let Φ_1 be an AU-irreducible subcovering of Φ , and let

$$(1) O_1, O_2, \cdots, O_{\mu}, \cdots \quad (\alpha < \omega_{\mu})$$

be a well-ordered set of the type ω_{μ} of \mathcal{P}_1 . To construct a normal subfamily ψ of \mathcal{P}_1 , let $O_{\alpha_1} = O_1$, and take $p_2 \in S - \overline{O}_{\alpha_1}$, let O_{α_2} be the first term of the transfinite sequence (1) such that $O_{\alpha} \ni p_2$. Suppose that $O_{\alpha_{\nu}}$ ($\nu < \beta$) is defined, then we shall define $O_{\alpha_{\beta}}$ as follows: take $p_{\beta} \in S - \bigcup_{\nu < \beta} \overline{O}_{\alpha_{\nu}}$, let $O_{\alpha_{\beta}}$ be the first term of (1) such that $\overline{O}_{\alpha} \ni p_{\beta}$. Since \mathcal{P}_1 is irreducible, α_{β} ($\beta < \omega_{\mu}$) is defined and $\{\alpha_{\beta}\}$ is cofinal with $\{\alpha \mid \alpha < \omega_{\mu}\}$. Therefore $\psi = \{O_{\alpha_{\beta}} \mid \beta < \omega_{\mu}\}$ is a normal covering of power \mathbf{F}_{μ} .

If an open covering Φ is locally finite (or star finite), then $\overline{\Phi}$ consisting of the closures of all elements of Φ is locally finite (or star finite) and the union of the closures of some elements of Φ is closed.

¹⁾ For the usual concept of reducibility, see E. W. Chittenden [1].