126. On Generalized Continuous Convergence

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1957)

Recently, H. Schaefer [4] introduced a notion of generalized continuous convergence for a sequence of functions on a topological space. On the other hand, the present writer [1] proved that pseudo-compact completely regular space was characterised by theorems of Ascoli type and Arzela type. In this Note, we shall show that such a space is characterised by a notion of generalized continuous convergence (in the sense of H. Schaefer) which is defined below. Let S be a T_2 -space, and let f(x) be a real function defined on S. For a point x_0 of S, we shall define the oscillation $\sigma(f, x_0)$ of f(x) at the point x_0 as follows: $\sigma(f, x_0) = \inf_{U} \sup_{x,x' \in U} |f(x) - f(x')|,$

where inf. takes all neighbourhood U of x_0 .

Let U be a neighbourhood of x_0 , and $f_n(x)$ be a sequence of functions defined on S, then we set $S(n, U) = \bigcup_{k \ge n} f_k(U)$. The set $\{S(n, U)\}$ for n and U is a base of filter on real line. We denote the filter generated by $\{S(n, U)\}$ by $F(x_0, f_n)$.

Definition 1. A sequence $\{f_n(x)\}$ of functions is said to be continuously convergent at a point x_0 of S, if the filter $F(x_0, f_n)$ converges on reals (see H. Schaefer [4, p. 424]).

 $f_n(x)$ is said to be uniformly convergent at a point $x_0 \in S$, if for a given positive ε , there are a neighbourhood U of x_0 and an integer N such that $|f_m(x)-f_n(x)| < \varepsilon$ for all x of U and $m, n \ge N$.

In his paper [1], the present author has proved that a completely regular space is pseudo-compact if and only if every sequence of continuous functions which is uniformly convergent at each point is uniformly convergent.

H. Schaefer [4] has obtained that a sequence $\{f_n(x)\}$ of continuous functions on a topological space converges continuously at a point x_0 if and only if it is uniformly convergent at the point x_0 and $\lim_{n\to\infty} (x_0, f_n) = 0$.

Therefore, if a completely regular space S is pseudo-compact, and a sequence $\{f_n(x)\}$ of continuous functions is continuously convergent at each point, its convergence is uniform on S. Conversely, if every sequence of continuous functions which converges continuously at each point on a completely regular space is uniformly convergent, then it is pseudo-compact. Suppose that it is not pseudo-compact, then there