146. Note on a Theorem for Metrizability

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1957)

In the present note, we shall apply the previous metrization theorem¹⁾ to an open problem and shall prove the metrizability of a T_1 -space X satisfying the following condition of T. Inagaki:²⁾

For every point p of X, we can assign a nbd (=neighborhood) basis $\{V_n(p) \mid n=1, 2\cdots\}$ such that

I) for every $p \in X$ and n, there exists $m = \alpha(p, n)$ such that $p \in V_m(q)$ implies $V_m(q) \subseteq V_n(p)$,

II) for every $p \in X$ and n, there exists $l = \beta(p, n)$ such that $q \in V_l(p)$ implies $p \in V_n(q)$.

Theorem. In order that a T_1 -space X is metrizable it is necessary and sufficient that X satisfies the above condition.

Proof. Since the necessity is clear, we prove only the sufficiency.

1. First, we remark that we can assume, without loss of generality, that m < n implies $V_m(p) \supseteq V_n(p)$ for every $p \in X$; otherwise we have the fulfilment of the condition by replacing $V_n(p)$ with $V_1(p) \cap \cdots \cap V_n(p)$.

2. For every $p \in X$ and n, we can choose $k = \gamma(p, n)$ such that $q \in V_k(p)$ implies $p \in V_m(q) \subseteq V_n(p)$ for $m = \alpha(p, n)$.

To show this, let $m = \alpha(p, n)$, $k = \beta(p, m) = \gamma(p, n)$. Then $q \in V_k(p)$ implies $p \in V_m(q) \subseteq V_n(p)$ by I) and II).

3. For every $p \in X$ and n, there exist nbds $M_n^1(p)$ and $M_n^2(p)$ of p such that $q \notin V_n(p)$ implies $M_n^1(p) \frown M_n^2(q) = \phi$.

We let $k = \gamma(p, n), \quad l = \beta(p, n), \quad k' = \gamma(p, l);$

$$V_k(p) = M_n^1(p), \quad V_{k'}(p) = M_n^2(p)$$

Now, let $q \notin V_n(p)$, $r \in M_n^1(p) \frown M_n^2(q) \neq \phi$.

Then in the case of $m = \alpha(p, n) \leq \alpha(q, l) = m'$,³⁰ we have

 $q \in V_{m'}(r) \subseteq V_m(r) \subseteq V_n(p)$

from 2, which contradicts $q \notin V_n(p)$.

In the case of $m = \alpha(p, n) \ge \alpha(q, l) = m'$, we have $p \in V_m(r) \subseteq V_{m'}(r) \subseteq V_l(q)$,

¹⁾ J. Nagata: A theorem for metrizability of a topological space, Proc. Japan Acad., **33**, no. 3 (1957), Theorem 1. See, also, J. Nagata: A contribution to the theory of metrization, Jour. Inst. Polytech., Osaka City Univ., **8**, no. 2 (1957).

²⁾ T. Inagaki: Sur les espaces à structure uniforme, Jour. of the Faculty of Sciences, Hokkaido University, **10** (1943). Prof. Inagaki proved in the paper that a separable space satisfying this condition was perfectly separable. We have learned from Prof. K. Morita that the metrization of such a space is an open problem.

³⁾ We remark that this l does not mean $\beta(p, n)$ but $\beta(q, n)$.