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In 1934, Th. Skolem proved the following famous theorem:¥

“Any finite or enumerable infinite set M of propositions which
are true with respect to the natural number sequence N and can be
expressed by closed formulae® in the symbolism of the restricted pred-
icate calculus must be true under another interpretation”.

Skolem has proved this theorem by constructing a linearly ordered
set N* of individuals, which is not isomorphic to N and makes all of
propositions of M true under an interpretation, with equality in its
usual meaning. But, of course, the method of construction of N* is
not sufficiently constructive; i.e. it is not finitary.

On the other hand, in 1929, K. Godel established the following
theorem,® named the completeness theorem for the restricted predicate
calculus:

“Given an enumerably infinite (or finite) set of formulae of the
restricted predicate calculus, if the negation of every conjunction of a
finite number of them is unprovable in the predicate calculus, then
they are jointly satisfiable in a non-empty domain”.

Under the completeness theorem, which is proved by use of non-
finitary methods, Skolem’s theorem can be easily obtained® as a corol-
lary of Godel’s undecidability theorem:®

“For any consistent recursive class « of axioms, which implies
the natural number theory, there exists a recursive predicate R(x),
such that the propositions R(1), R(2), R(3),- - - are all provable from &«
but V « R(x) is unprovable from «”.

But, in this case, it becomes to be necessary that the set M is,
in Godel’s sense, recursive.”
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