48. Measures in the Ranked Spaces. II

By Hatsuo Okano

Osaka University (Comm. by K. KUNUGI, M.J.A., April 12, 1958)

In the preceding paper¹⁾ we showed a method to construct outer measures in ranked spaces. But, in general, every open set is not always measurable. So in this note assuming some conditions we give a method to construct Borel measures in ranked spaces: By a Borel measure in an ω_0 -ranked space R which satisfies F. Hausdorff's axiom (C) we mean a finite or infinite real valued, non-negative, and countably additive set function, defined on the countably additive class of sets, denoted by \mathfrak{B} , generated by the class of all open sets.

1. Definition 1. For two neighbourhoods v(p) and u(q) in an ω_0 -ranked space we call that v(p) is strongly contained in u(q), denoted by $v(p) \subseteq u(q)$, if there exists a neighbourhood v'(p) of p such that $v(p) \subseteq v'(p) \subseteq u(q)$ and the rank of v(p) > the rank of v'(p) > the rank of u(q). A disjoint finite family of neighbourhoods $\{v_n(p)\}$ is called a packing of a neighbourhood u(q) if $v_n(p_n) \subseteq u(q)$ for each n. And let $\{v_n(p_n)\}$ and $\{u_m(q_m)\}$ be two packings of v(p) and u(q) respectively. We call that the packings have the same type if, for each rank n, the number of neighbourhoods of rank n of $\{v_n(p_n)\}$ coincides with that of $\{u_m(q_m)\}$.

Let R be an ω_0 -ranked space which satisfies the following conditions (1.1)-(1.4):²⁾

(1.1) For every neighbourhood v(p) of a point p there exists a rank n such that, for any rank $m, m \ge n$, there exists a neighbourhood u(p) of rank m included in v(p).³⁰

(1.2) There is a rank n_0 such that, for any rank n, the upper limit of numbers of disjoint neighbourhoods of rank n contained strongly in a neighbourhood of rank n_0 is finite.⁴⁾

(1.3) For two neighbourhoods v(p) and u(q) of the same rank and a packing of v(p), u(q) has a packing of the same type.⁵⁾

(1.4) For any fundamental sequence $\{v_n(p_n)\}$ there exists a point p in $\bigcap_n v_n(p_n)$ such that, for any neighbourhood v(p) of p, there exists

3) Cf. [I, (2.2)].

4) Cf. [I, (2.4)].

5) Cf. L. H. Loomis: Haar measure in uniform structure, Duke Math. J., 16, 193-208 (1949).

¹⁾ H. Okano: Measures in the ranked spaces, Proc. Japan Acad., **34**, 136-141 (1958), cited by [I] in this paper.

²⁾ In the sequel we use the terminology neighbourhood only when it has a rank.