44. Decomposition-equivalence and the Existence of Nonmeasurable Sets in a Locally Compact Group

By Yoshimichi MIBU

(Comm. by Z. SUETUNA, M.J.A., April 12, 1958)

Let G be a locally compact and σ -compact group and m^* a left invariant outer measure in G. In the theory of Haar's measure, it is well known that any two measurable sets $A \subseteq G$ and $B \subseteq G$ of the same measure are decomposition-equivalent to each other, that is, there exist direct decompositions

(1)
$$A = M + A_1 + A_2 + \dots + A_n + \dots,$$
$$B = N + B_1 + B_2 + \dots + B_n + \dots$$

of A and B, with relations

(2) $m^*(M) = m^*(N) = 0, \ g_i A_i = B_i, \ g_i \in G, \ i=1, 2, \cdots,$

(3) every A_i is m^* -measurable.

Conversely, any two measurable sets which are decompositionequivalent to each other have clearly the same measure. Hence if $m(A) \neq m(B)$ (for measurable set A we write m(A) instead of $m^*(A)$), then the set A is not decomposition-equivalent to B. But if we admit, in the expression (1), non-measurable sets A_i 's, then it is proved that for any two measurable sets A and B of positive measures, even though m(A) is not equal to m(B), there exist direct decompositions (1) satisfying the condition (2). This is included in the Corollary of Theorem 1 as a special case.

Definition. Let A and B be two subsets of G. If there exist direct decompositions (1) satisfying the condition (2), then A is called to be almost decomposition-equivalent to B. And if further in the expression (1) both M and N can be taken to be empty, A is called to be completely decomposition-equivalent to B.

Remark 1. In the above definition it is not assumed that each A_i is measurable. Our definition of decomposition-equivalence is different from the usual one.

Notation. In the following we denote by $A \sim B$ and $A \approx B$ the almost and completely decomposition-equivalence of A to B respectively.

Remark 2. Suppose that $A \approx B$. Then $m^*(A) = 0$ implies $m^*(B) = 0$. And if A is of the first category, then B is also of the same category.

The following lemma is easily proved.

Lemma 1. 1) $A \sim A (A \approx A)$, 2) $A \sim B (A \approx B)$ implies $B \sim A (B \approx A)$, 3) $A \sim B (A \approx B)$ and $B \sim D (B \approx D)$ imply $A \sim D (A \approx D)$.

Lemma 2. Suppose that $A \approx B$ $(A \sim B)$ and $B \subseteq A$. If $B \subseteq D \subseteq A$,