80. On the Regularity of Domains for Parabolic Equations

By Haruo MURAKAMI

Kobe University

(Comm. by K. KUNUGI, M.J.A., June 12, 1958)

Let G be a domain with the boundary Γ in the m-dimensional Euclidean space \mathbb{R}^m . Let $D=G\times(0,\infty)$ and $B=\Gamma\times[0,\infty)$. W. Fulks pointed out in [1] by constructing barriers at every boundary point of G that if D is regular for the heat equation then G is regular for Laplace's equation. In this note we shall show also by constructing barriers of the parabolic equation at every point of $G \subseteq B$ that the converse of the result above by W. Fulks is true.

Consider the equation (E) $\Box u = f(x, t, u)^{1}$ where f(x, t, u) is continuous on $D \times (0, \infty)$ and quasi-bounded with respect to u.

As in [2, p. 623], we say that w(x, t) is a barrier of (E) at a boundary point $(x^0, t^0) \in G \subseteq B$ with respect to a bounded function $\beta(x, t)$ defined on $G \subseteq B$ if w(x, t) satisfies:

- (i) w(x, t) is continuous on \overline{D} ,
- (ii) w(x, t) > 0 $(x, t) \in \overline{D}$, $(x, t) \neq (x^0, t^0)$,
- (iii) $w(x, t) \rightarrow 0$ $(x, t) \rightarrow (x^{\circ}, t^{\circ}), (x, t) \in \overline{D},$
- (iv) $\bigtriangledown w(x, t) \leq -M$, where

 $M = \sup \{ |f(x, t, \overline{\beta}(x^0, t^0))|, |f(x, t, \beta(x^0, t^0))|; (x, t) \in \overline{D} \}.$

It is known²⁾ that if every point of $G \subseteq B$ has barriers then D is regular for (E), i.e. the first boundary value problem of (E) is always solvable for any continuous data on $G \subseteq B$.

Now we shall construct the barrier w(x, t) satisfying the conditions (i), (ii), (iii) and (iv) under the assumption that G is regular for Laplace's equation.

In case that $(x^0, t^0) \in G$, it is easy to see that the function $w(x, t) = \sum_{i=1}^{m} (x_i - x_i^0)^2 + (2m + M)(t - t^0)$ is a barrier at (x^0, t^0) . In case that $(x^0, t^0) \in B$ with $t^0 > 0$, let $\varphi(x, t) = \sum_{i=1}^{m} (x_i - x_i^0)^2 + (t - t^0)^2$. Then we have $\varphi(x, t) \ge 0$ and $\Box = \varphi(x, t) = \sum_{i=1}^{m} \partial^2 \varphi(x, t) = \partial \varphi(x, t)$

¹⁾ \Box and \triangle below are respectively the generalized heat and Laplacian operators. For the definitions, see [2, p. 627], where \Box is denoted by \Box . See also [3, p. 349].

^{2) [2,} pp. 624-626].