94. Ideals in Non-commutative Lattices

By Shin-ichi Matsushita

(Comm. by K. KUNUGI, M.J.A., July 12, 1958)

§ 1. We published in 1953 a résumé of the theory of non-commutative lattices in C. R. Acad. Sci., Paris [11]. After this, we have received communications from Dr. F. Klein-Barmen and also from Prof. Dr. Pascual Jordan that Prof. P. Jordan with collaborators, Dr. E. Witt and Dr. W. Böge, had been constructing the theory of non-commutative lattices, independently of us, for the sake of applications in "theoretical physics" [3-6], and also independently, F. Klein published some excellent and interesting works on the similar articles [7-10].

Here, we shall make a survey of ideal theory in non-commutative lattices, from which the structure of some kinds of non-commutative lattices (normal and regular type) is decided (see § 3). This paper is also a résumé; and a full note, with complete proofs of [1], (titled "Theorie der nichtkommutativen Verbände I-II") will appear elsewhere.*

- § 2. Let $\mathfrak A$ be an algebraic system with binary operators * and \circ , both of which are associative and idempotent, but not necessarily commutative. If an order < in $\mathfrak A$, i.e. i) x < x, ii) x < y, $y < x \rightarrow x = y$, iii) x < y, $y < z \rightarrow x < z$ for x, y, $z \in \mathfrak A$, satisfies a further condition: for any $a \in \mathfrak A$,
- (2.1) $x < y \to a*x < a*y$ (or x*a < y*a), then it is called left (resp. right) *-order of $\mathfrak A$. And if a left (or right) *-order < of $\mathfrak A$ fulfils
- (2.2) $x < x*a \text{ (resp. } x < a*x) \text{ for any } x, a \in \mathfrak{U},$ then such < is called a left (resp. right) L-*-order of \mathfrak{U} . Similarly, a left (or right) L-*-order of \mathfrak{U} is defined.

Theorem 1. In order that $\mathfrak A$ admit at least one left or right L-*-order, it is necessary and sufficient that the following equality be kept in $\mathfrak A$;

- (2.3) α) x*a = x*a*x resp. β) a*x = x*a*x.
- An order < (or <) is called stronger (resp. weaker) than < (resp. <) if a < b yields a < b: then

Theorem 2. Suppose that $\mathfrak A$ satisfies the condition α) (or β)) in (2.3) above: Then

- I) The order in \mathfrak{A} defined by a < b if and only if b = a * x (resp.
- *) I express my hearty thanks to Dr. F. Klein-Barmen and also to Prof. Dr. Van der Waerden and his assistant Dr. R. Fischer for their precious advices and the precise examination of my theory.