No. 10]

149. On Convolution of Laurent Series

By Yûsaku Komatu

Department of Mathematics, Tokyo Institute of Technology, Tokyo (Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1958)

1. Related to a conjecture proposed by Pólya and Schoenberg [4], we have observed in a previous paper [1] a class \Re_0 of regular analytic functions defined in the unit circle |z| < 1 which are of positive real part there and equal to unity at the origin. It has been shown that if both functions

$$f(z) = 1 + 2 \sum_{n=1}^{\infty} a_n z^n$$
 and $g(z) = 1 + 2 \sum_{n=1}^{\infty} b_n z^n$

belong to \Re_0 then the function defined by

$$h(z) = 1 + 2 \sum_{n=1}^{\infty} a_n b_n z^n$$

also belongs to \Re_0 .

In the same paper [1], we have also observed, as a straightforward generalization of the class \Re_0 , a class \Re_q of single-valued regular analytic functions defined in an annulus (0<)q<|z|<1 which are of positive real part and normalized by the conditions that their values on |z|=q have the constant real part and that their Laurent expansions have the constant term equal to unity. For this class, it has been shown that if both functions

$$f(z) = 1 + 2 \sum_{n=-\infty}^{\infty} \frac{a_n}{1-q^{2n}} z^n$$
 and $g(z) = 1 + 2 \sum_{n=-\infty}^{\infty} \frac{b_n}{1-q^{2n}} z^n$

belong to \Re_q then the function defined by

$$h(z) = 1 + 2 \sum_{n=-\infty}^{\infty} \frac{a_n b_n}{1 - q^{2n}} z^n$$

also belongs to \Re_q ; here the prime means that the summand with the suffix n=0 is to be omitted.

On the other hand, in a previous paper [2], we have considered, together with the classes mentioned above, a wider class $\hat{\Re}_q$ which is obtained by rejecting the restricting condition for \Re_q imposed on image of |z|=q. Namely, the class consists of single-valued regular analytic functions defined in an annulus (0<)q<|z|<1 which are of positive real part and normalized by the condition that their Laurent expansions have the constant term equal to unity.

The result on \Re_q referred to above does not admit a formally direct generalization for the class $\hat{\Re}_q$ as it stands. In fact, for functions