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In this note we shall deal with the problem proposed in §12 of
Yano [6]. We prove a theorem (Theorem 1) concerning Riemann
summability by using Lemma 3. Riemann summability of >la, is
closely connected with Cesaro summability of an even function ¢(t)eL
with Fourier coefficients a,. Here we notice that in Riemann sum-
mability a, are independent of Fourier coefficients. Lemma 1 will
interpret the relation between these two summabilities by the help of
Lemmas 2 and 4; — this is a chief object of this paper. In §3 we
shall give “Riemann-Cesaro summability ’—analogue.

1. Riemann summability. A series

e =3a (=0
is said to be summable to sum s by Riemann method of order p, or
briefly summable (R, p) to s, if the series in
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converges in some interval 0<t<t, and F(t)—>s as t—>0 (cf. Ver-
blunsky [1]). Here we suppose that p is a positive integer, and a,
are real throughout this paper.

The n-th Cesaro sum of order r of >a, is

s=314;,0, (— oo <r< o),
vm=(
where A}, is defined by the identity
(L—a) "= 33 Azar (@] <1),

and in particular a,=s;*.
THEOREM 1. Let —1=<b,*® b<p—1<y<p, and 5:.1?;1_’1(,3_7),
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as m—>oo, then >la, is summable (R, p) to zero.
In the case b=—1 we have the following corollary.

*) We could remove the restriction d=-1 in this theorem by the argument used
in Yano [5].




