49. On the Extensions of Finite Factors. II

By Zirô Takeda

Ibaragi University

(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

Since extensions of a continuous finite factor A are closely related with extensions of the group K of all inner automorphisms of A [2], some fundamentals of the cohomology theory of groups reflect upon constructions of extended factors. In this paper we shall show that the effectiveness of a group G of automorphism classes for the construction of extended factors is decided by the fact that a three-dimensional cochain associated with G is coboundary or not. In general, the group K has no central element other than 1 and so, by a proposition of group extensions, the extension of K by G is uniquely determined within equivalences. On the other hand we shall define an equivalence relation in factors extended by G analogously to the one for extended groups and then show that the equivalent classes of extensions of A by Gare one-to-one correspondent to the second cohomology group $H^2(G, Z)$, where Z is the unit circle in the complex plane and G is assumed to act on Z trivially.

1. We use the same notations as in [2] as possible. By A we mean a continuous finite factor acting on a separable Hilbert space and by $\widetilde{\mathfrak{A}}$ the group of all *-automorphisms of A. Denote by K the group of all inner automorphisms of A. K is a normal subgroup of $\widetilde{\mathfrak{A}}$. Put \mathfrak{A} the quotient group $\widetilde{\mathfrak{A}}/K$. We take up an enumerable subgroup G of \mathfrak{A} . We call G a group of automorphism classes. For every element $\alpha \in G$ we choice a representative $\overline{\alpha}$ in the coset α of the quotient $\widetilde{\mathfrak{A}}/K$, then for every α and β there occurs $m_{\alpha,\beta} \in K$ such that $\overline{\alpha} \cdot \overline{\beta} = \overline{\alpha} \overline{\beta} \cdot m_{\alpha,\beta}$. This satisfies relations:

(1)
$$(k^{\alpha})^{\beta} = (k^{\alpha\beta})^{m_{\alpha},\beta}$$
 for $k \in K$

$$(2) m_{\alpha,\beta\gamma}m_{\beta,\gamma} = m_{\alpha\beta,\gamma}m_{\alpha}^{\gamma}$$

where $k^{\alpha} = \overline{\alpha}^{-1}k\overline{\alpha}$ and $k^{m} = m^{-1}km$ $(m \in K)$. We call such a system $\{m_{\alpha,\beta}\}$ a factor set of inner automorphisms of A. If a factor set $\{m_{\alpha,\beta}\}$ satisfies $m_{\alpha,\alpha^{-1}}=1$ for every α , it is normalized. In this paper we consider only such a group for which normalized factor sets exist. For a factor set $\{m_{\alpha,\beta}\}$, we get an extension K of the group K by G, which we show by $K = (K, G, m_{\alpha,\beta})$ [1, 2].

Let $\mathbf{K}^{(1)} = (K, G, m_{\alpha,\beta}^{(1)})$ and $\mathbf{K}^{(2)} = (K, G, m_{\alpha,\beta}^{(2)})$ be two extensions of a group K by a group G with respect to different factor sets $\{m_{\alpha,\beta}^{(1)}\}$ and $\{m_{\alpha,\beta}^{(2)}\}$ respectively. If there is an isomorphism between $\mathbf{K}^{(1)}$ and $\mathbf{K}^{(2)}$ satisfying