108. Remarks on Pseudo-resolvents and Infinitesimal Generators of Semi-groups

By Tosio KATO
Department of Physics, University of Tokyo

Let X be a Banach space and $E(X)$ the algebra of all bounded linear operators on X to X. As is well known, a linear operator A in X is the infinitesimal generator of a semi-group $\{U(t)\}$, $0 < t < \infty$, $U(t) \in E(X)$, if i) A is densely defined, ii) the resolvent $(\lambda I - A)^{-1} \in E(X)$ exists for sufficiently large real λ and $\|(\lambda I - A)^{-1}\| = O(\lambda^{-1})$ for $\lambda \to +\infty$ and iii) certain additional conditions are satisfied according to the types of semi-groups considered.\(^1\)

The object of the present note is to point out that i) is a consequence of ii), provided that the underlying space X is locally sequentially weakly compact (abbr. l.s.w.c.). In particular this is the case if X is reflexive.\(^2\) This will be shown below as a consequence of a general theorem on pseudo-resolvents.\(^3\) A pseudo-resolvent $J(\lambda)$ is a function on a subset D of the complex plane to $E(X)$ satisfying the resolvent equation

$$ J(\lambda) - J(\mu) = -(\lambda - \mu)J(\lambda)J(\mu), \quad \lambda, \mu \in D. $$

It follows directly from (1) that all $J(\lambda)$, $\lambda \in D$, have a common null space N and a common range R, which will be called respectively the null space and the range of the pseudo-resolvent under consideration. N is a closed subspace of X, but R need not be closed; we denote by $[R]$ the closure of R. Note that $J(\lambda)$ is a resolvent (of a closed linear operator A) if and only if $N = \{0\}$; in this case R coincides with the domain of A.

Theorem. Let $J(\lambda)$, $\lambda \in D$, be a pseudo-resolvent with the null space N and the range R. Let there be a sequence $\{\lambda_n\}$, $n = 1, 2, \ldots$, such that

$$ \lambda_n \in D, \quad |\lambda_n| \to +\infty, \quad ||\lambda_n J(\lambda_n)|| \leq M = \text{const}. $$

Then we have

$$ N \cap [R] = \{0\}. $$

If, in particular, X is l.s.w.c., then

$$ X = N \oplus [R]. $$

\(^2\) When X is a Hilbert space, this fact was noted by C. Foiaș, Bull. Soc. Math. France, 85, 263 (1957).

\(^3\) Hille and Phillips: Footnote 1), pp. 126 and 183.