102. On Compactness of Weak Topologies

By Hidegorô NAKANO

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

Let R be a space and a_{λ} ($\lambda \in \Lambda$) a system of mappings of R into topological spaces S_{λ} with neighbourhood systems \mathfrak{N}_{λ} ($\lambda \in \Lambda$). Concerning the weak topology of R by a_{λ} ($\lambda \in \Lambda$), i.e. the weakest topology of R for which all a_{λ} ($\lambda \in \Lambda$) are continuous, we have (H. Nakano: Topology and Linear Topological Spaces, Tokyo (1951), §19, Theorem 4. This book will be denoted by TLTS):

Theorem 1. If all S_{λ} ($\lambda \in \Lambda$) are compact Hausdorff spaces, then, in order that the weak topology of R be compact, it is necessary and sufficient that for any system of points $a_{\lambda} \in S_{\lambda}$ ($\lambda \in \Lambda$) subject to the condition

(F)
$$\bigcap_{\nu=1}^{n} \alpha_{\lambda_{\nu}}^{-1}(U_{\lambda_{\nu}}) \neq \phi$$

for every finite number of open sets $a_{\lambda_{\nu}} \in U_{\lambda_{\nu}} \in \mathfrak{N}_{\lambda_{\nu}}, \lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, n$), we can find a point $x \in R$ for which $\mathfrak{a}_{\lambda}(x) = a_{\lambda}$ for every $\lambda \in \Lambda$.

In the sequel, we consider generalization of this theorem in the case where S_{λ} ($\lambda \in \Lambda$) are merely compact.

Theorem 2. If all S_{λ} ($\lambda \in \Lambda$) are compact and for any system of points $a_{\lambda} \in S_{\lambda}$ ($\lambda \in \Lambda$) subject to the condition (F), we can find a point $x \in R$ for which $a_{\lambda}(x) \in \{a_{\lambda}\}^{-}$ for every $\lambda \in \Lambda$, then the weak topology of R is compact.

Proof. Let K be a maximal system of sets of R subject to the condition (I) $\bigcap_{\nu=1}^{n} K_{\nu} \neq \phi$ for every finite number of sets $K_{\nu} \in \Re$ ($\nu = 1, 2, \dots, n$). We see easily then that $A \frown K \neq \phi$ for all $K \in \Re$ implies $A \in \Re$, and L, $K \in \Re$ implies $L \frown K \in \Re$. For any $\lambda \in \Lambda$, we have obviously $\bigcap_{\nu=1}^{n} \mathfrak{a}_{\lambda}(K_{\nu}) \neq \phi$ for every finite number of sets $K_{\nu} \in \Re$ ($\nu = 1, 2, \dots, n$), and hence $\bigcap_{\substack{K \in \Re \\ K \in \Re}} \mathfrak{a}_{\lambda}(K)^{-} \neq \phi$, because S_{λ} is compact by assumption. For a point $a_{\lambda} \in \bigcap_{\substack{K \in \Re \\ K \in \Re}} \mathfrak{a}_{\lambda}(K)^{-}$, we have

$$a_{\lambda}^{-1}(U) \in \Re$$
 for $a_{\lambda} \in U \in \mathfrak{N}_{\lambda}$,

because for $a_{\lambda} \in U \in \mathfrak{N}_{\lambda}$, $K \in \mathfrak{R}$ we have obviously

$$\mathfrak{a}_{\mathfrak{d}}(K \frown \mathfrak{a}_{\mathfrak{d}}^{-1}(U)) = \mathfrak{a}_{\mathfrak{d}}(K) \frown U \neq \phi$$

which yields $K \frown \mathfrak{a}_{\lambda}^{-1}(U) \neq \phi$. Therefore the system of points $a_{\lambda} (\lambda \in \Lambda)$ satisfies the condition (F), and hence we can find a point $x \in R$ by assumption such that $\mathfrak{a}_{\lambda}(x) \in \{a_{\lambda}\}^{-}$ for every $\lambda \in \Lambda$. For such a point $x \in R$, we have obviously $\mathfrak{a}_{\lambda}(x) \in \bigcap_{K \in \Re} \mathfrak{a}_{\lambda}(K)^{-}$, and consequently $\mathfrak{a}_{\lambda}^{-1}(U) \in \Re$ for $\mathfrak{a}_{\lambda}(x) \in U \in \mathfrak{N}_{\lambda}$, as proved just above. Therefore we have