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In this paper we shall establish two lemmas concerning the Cesro
summability of Fourier series. Of these, Theorem 1 is closely related
to the result of Chandrasekharan and Szsz 2, Theorem 5. And
Theorem 2 is concerned with the estimation of the principal part of
Fejr kernels.

1. THEOREM 1. If (f(t)eL in 0tt0, and r:>0, 3>0, and q be
arbitrary, then

(1.1) )(t)=-l--- (t-)-f()d-o(t) (tO)
r(r)

is equivalent to
1 (t_)_f()d_o(t,) (tO).(1.2) O(t) r(r---o

Letting

(t)-- F(r+-- 1).t_(+ )(t) ( => 0),
 r(a+ 1)

and (t)-(t), we have the following
COROLLARY 1. Let (t)eL in (0, t0), and r>0, 0, and q be ar-

bitrary. Then
r(t)-- S+O(t-) (t-->O)

is equivalent to
s +o(t -9 (t -+ o),

where s is a constant independent of t.
Concerning this corollary, cf. loc. cit. [2_.
We need two lemmas:
LEMMA 1. Theorem I holds when -k, where k is a positive

integer.
This is Lemma 3 in the paper [3, but for the sake of complete-

hess we prove it. We first consider the case k--1. Observe now that
(1.3) (t)=t@(t)--r@ (t),
and that necessarily, since r>0,
(1.4) @+(t)-o(t).

If q>--l, then (1.1) implies
(1.5) +(t)=o(tq+),
and then by (1.3),
(1.6) (t)-o(t+),
which follows from (1.1) still when q --1, by (1.3) and (1.4).


