63. On the Semi-exact Canonical Differentials of the First Kind

By Mineko MORI

Mathematical Institute, Kyoto University (Comm. by K. KUNUGI, M.J.A., May 19, 1960)

1. Introduction. Let R be an arbitrary open Riemann surface of finite genus g. We shall denote by \Re the class of semi-exact canonical differentials¹⁾ (or integrals of these) on R, and by δ an arbitrary divisor of finite order $d[\delta]$ on R. Then, with differentials and integrals (functions) of \Re , the following Riemann-Roch's theorem was established by Prof. Kusunoki:²⁾

$$A[\delta^{-1}] - B[\delta] = 2(d[\delta] - g + 1),$$

where $A[\delta^{-1}]$ denotes the number of linearly independent (in the real sense) functions $\in \mathbb{R}$, which are single-valued on R and multiples of δ^{-1} , and $B[\delta]$ the number of linearly independent differentials $\varphi \in \mathbb{R}$ which are multiples of δ . If we take a divisor $\delta = P^r$ ($0 \leq r \leq g, P \in R$) we have therefore $B[P^r] \geq 2(g-r)$, in particular, $B[P^g] \geq 0$. In the present paper, we shall show that the set of the points where $B[P^g]=0$ is dense in R, and the properties of the points. Theorem 3 shows the existence of parallel slit mappings under an additional condition on the boundaries. And finally, some remarks on curves in R and points lying on the boundaries will be given.

2. Theorem 1. The set of the points at which $B[P^{g}]=0$ is dense in R.

Proof. If the theorem is not true, there is an open set U in Rwhich does not contain any point where $B[P^{g}]=0$. Let P_{0} be an arbitrary point in U. In terms of a local parameter $z=\Phi(P)(\Phi(P_{0})=0)$ about P_{0} , each of the 2g basis differentials³⁰ $\varphi_{j} \in \Re$ $(j=1,2,\cdots,2g)$ of the first kind on R, can be represented as $\varphi_{j}=f_{j}(z)dz$, where the $f_{j}(z)$ $(j=1,2,\cdots,2g)$ are linearly independent analytic functions of z=x+iyabout P_{0} . We consider the following real function which is analytic with respect to x and y:

$$V_{2g}(z) \equiv |R_{2g}^0 I_{2g}^0 R_{2g}^1 I_{2g}^1 \cdots R_{2g}^{g-1} I_{2g}^{g-1}|$$

where

¹⁾ Cf. Kusunoki [3, pp. 241-242], and Nevanlinna [4].

²⁾ Kusunoki [3, Theorem 8], and Kusunoki [2].

³⁾ The existence of these basis differentials was verified in Kusunoki [3, Theorem 1].