62. Some Properties of Complex Analytic Vector Bundles over Compact Complex Homogeneous Spaces

By Mikio Ise

Ôsaka University

(Comm. by K. KUNUGI, M.J.A., May 19, 1960)

1. This note is a summary of the author's paper which will appear in the Ôsaka Mathematical Journal on the same title. Our concerns are complex analytic vector bundles over C-manifolds in the sense of H. C. Wang [11], and, in particular, homogeneous vector bundles introduced by R. Bott [4]. Mainly by use of Bott's method, we shall investigate some properties of these bundles.

2. Let X be a C-manifold with an almost effective Klein form G/U, where G is a connected complex semi-simple Lie group and U a connected closed complex Lie subgroup of G. Now, let $E=E(\rho, F)$ denote the homogeneous vector bundle defined by a complex analytic representation (ρ, F) of U. Then, the complex vector space $\Gamma_x(E)$ of all sections of E is identified with the set of all holomorphic mappings s of G into F such that

$$s(gu) = \rho(u^{-1}) \cdot s(g)$$
, for every $g \in G$ and $u \in U$.

Moreover the induced representation in the sense of Bott, which we denote by ρ^{*} , is defined by

$$(\rho^{\#}(g)s)(g') = s(g^{-1}g')$$

(for every $s \in \Gamma_x(E)$ and $g, g' \in G$) as a complex analytic representation of G over $\Gamma_x(E)$. We define a linear mapping ν of $\Gamma_x(E)$ into F by setting

 $\nu(s) = s(e)$, (e = the unit element of G).

We say, if ν is surjective, that E has sufficiently many sections. In this case we have an exact sequence as U-modules:

$$(1) 0 \longrightarrow F' \longrightarrow \Gamma_x(E) \xrightarrow{\nu} F \longrightarrow 0$$

via $\rho^{\text{\tiny \#}}$ and ρ , as is easily verified, where F' is the kernel of ν . Now assume that dim F=m and dim $\Gamma_{\mathcal{X}}(E)=n$, and take the basis $\{\xi_1,\dots,\xi_n\}$ of $\Gamma_{\mathcal{X}}(E)$ such that $\{\xi_1,\dots,\xi_{n-m}\}$ span F'. Then, identifying the exact sequence (1) with

 $0 \longrightarrow C^{n-m} \longrightarrow C^n \longrightarrow C^m \longrightarrow 0; \quad C^m = C^n/C^{n-m},$

we can consider $\rho^{\#}$ as a homomorphism of G into GL(n, C) sending U into the subgroup GL(n, m; C) which consists of non-singular matrices leaving C^{n-m} invariant. Thus, we obtain from $\rho^{\#}$, transferring to the coset spaces, a holomorphic mapping f_{ρ} of X into the complex Grassmann manifold G(n, m) = GL(n, C)/GL(n, m; C). The last manifold