74. On the Theory of Non-linear Operators

By Sadayuki YAMAMURO Hokkaido University (Comm. by K. KUNUGI, M.J.A., June 13, 1960)

In this note, we consider the eigenvalue problem of some kinds of non-linear integral operators of Hammerstein type. In §1, we will give a general principle, and, in §2, we will apply it to the case of integral operators of Hammerstein type defined on Banach function spaces.

§1. Let R be a Banach space¹⁾ and \overline{R} be its conjugate space. For $\phi \in R$ and $\Phi \in \overline{R}$, we denote the value of Φ at ϕ by (Φ, ϕ) .

A functional (in general, non-linear) $F(\phi)$ ($\phi \in R$) is said to be Fréchet-differentiable at ϕ_0 if there exists an operator grad $F = \mathfrak{f} \in (R \to \overline{R})$ such that

 $F(\phi_0 + \phi) - F(\phi_0) = (\mathfrak{f}\phi_0, \phi) + r(\phi_0, \phi),$ $\lim_{\|\phi\| \to 0} \frac{|r(\phi_0, \phi)|}{||\phi||} = 0.$ $F(\phi) \text{ is said to be increasing}^{2^{\mathfrak{d}}} (decreasing) \text{ if }$ $\lim_{\|\phi\| \to \infty} F(\phi) = +\infty \quad (-\infty).$

A linear operator $K \in (R \to \overline{R})^{8}$ is said to be symmetric if $(K\phi, \psi) = (K\psi, \phi) \quad (\phi, \psi \in R);$ positive definite if $(K\phi, \phi) \ge 0 \quad (\phi \in R).^{4}$

Theorem 1. Let R be a reflexive Banach space and $F(\phi)$ be convex, increasing, F(0)=0 and Fréchet-differentiable at any point of R. Let K be completely continuous, symmetric and positive definite. Then, for any number $\rho > 0$ there exists a number $\lambda_{\rho} > 0$ and an element $\phi_{\rho} \neq 0$ such that

$$K\phi_{\rho} = \lambda_{\rho} \delta\phi_{\rho}, \quad F(\phi_{\rho}) = \rho$$

Proof. For any $\rho > 0$, put

$$V_{\rho} = \{\phi \in R : F(\phi) \leq \rho\}.$$

Then, V_{ρ} is weakly closed and bounded. In fact, by virtue of continuity and convexity of $F(\phi)$, V_{ρ} is convex and closed, and the assumption that $F(\phi)$ is increasing implies that V_{ρ} is bounded.

¹⁾ In this note, we consider only *real* Banach spaces.

²⁾ This definition is due to [2, p. 302].

³⁾ By $(R_1 \rightarrow R_2)$, we denote the set of all operators whose domains are R_1 and ranges are in R_2 .

⁴⁾ For these properties of K, see [6], where a kind of eigenvalue problem of such K has been considered.