97. Finite-to-one Closed Mappings and Dimension. III

By Keiô NAGAMI

Ehime University, Matsuyama, Japan (Comm. by K. KUNUGI, M.J.A., July 12, 1960)

The method of proof employed in the previous note [5, Theorem 4] can be applied to new characterizations¹⁾ of dimension of metric spaces by means of a sequence of coverings, which generalize the results due to J. Nagata [7, Theorem 3] and C. H. Dowker and W. Hurewicz [2], as follows.

Theorem 1. In order that a topological space R be a metrizable space with dim $R^{2} \leq n$ it is necessary and sufficient that there exists a sequence of locally finite coverings $\mathfrak{H}_i = \{H_a; a \in A_i\}, i=1, 2, \cdots$, of R which satisfies the following conditions.

(1) $\overline{\mathfrak{H}}_{i+1} = \{\overline{H}_{\alpha}; \alpha \in A_{i+1}\}$ refines \mathfrak{H}_i for every *i*.

(2) $\liminf_{i} \operatorname{order} (x, \mathfrak{H}_i)^{\mathfrak{H}} \leq n+1 \text{ for every } x \in \mathbb{R}.$

(3) For any point $x \in R$ and any neighborhood U of x there exists i with Star $(x, \tilde{\mathfrak{D}}_i)^{4} \subset U$.

C. H. Dowker and W. Hurewicz's characterization [2] is a direct consequence of this theorem. As a corollary of this theorem we get the following.

Theorem 2. In order that a topological space R be a metrizable space with dim $R \le n$ it is necessary and sufficient that there exists a sequence of open coverings \mathfrak{U}_i , $i=1, 2, \cdots$, of R which satisfies the following conditions.

(1) \mathfrak{U}_{i+1}^{*} refines \mathfrak{U}_i for every *i*.

(2) $\liminf_{i} \operatorname{order} (x, \mathfrak{U}_i) \leq n+1 \text{ for every } x \in \mathbb{R}.$

(3) For any point $x \in R$ and any neighborhood U of x there exists i with Star $(x, \mathcal{U}_i) \subset U$.

J. Nagata's characterization [7, Theorem 3] is a direct consequence of this theorem.

We call a covering U of a space a multiplicative⁶⁾ one if for every non-empty intersection $\bigcap_{i=1}^{k} U_i$ of elements U_i , $i=1,\dots,k$, of \mathfrak{l} is also an element of \mathfrak{l} . The maximal number n such that there

¹⁾ The detail of the content of the present note will be published in another place.

²⁾ dim R denotes the covering dimension of R.

³⁾ order (x, \mathfrak{F}_i) denotes the number of elements of \mathfrak{F}_i which contain x.

⁴⁾ Star $(x, \mathfrak{F}_i) = \bigcup \{H_{\alpha}; x \in H_{\alpha} \in \mathfrak{F}_i\}.$

⁵⁾ $\mathfrak{n}_{i+1}^* = \{ \text{Star}(U, \mathfrak{n}_{i+1}); U \in \mathfrak{n}_{i+1} \}, \text{ where } \text{Star}(U, \mathfrak{n}_{i+1}) = \bigcup \{ V; U \cap V \neq \phi \ (=\text{the empty set}), V \in \mathfrak{n}_{i+1} \}.$

⁶⁾ Cf. [1] or [7].