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The method of proof employed in the previous note 5, Theorem 4
can be applied to new characterizations of dimension of metric spaces
by means of a sequence of coverings, which generalize the results due
to J. Nagata 7, Theorem 3 and C. H. Dowker and W. Hurewicz 2,
as follows.

Theorem 1. In order that a topological space R be a metrizable
space with dim R2_n it is necessary and sucient that there exists
a sequence of locally finite coverings i-{H; e Ai}, i-- 1, 2,..., of R
which satisfies the following conditions.

1 i+ 1-- [H,; A+I} refines (C) for every i.
2 lim inf order (x, (C)))_< n 3-1 for every xe R.

(3) For any point xeR and any neighborhood U of x there exists
i with Star (x, (C)) U.

C. H. Dowker and W. Hurewicz’s characterization 2 is a direct
consequence of this theorem. As a corollary of this theorem we get
the following.

Theorem 2. In order that a topological space R be a metrizable
space with dim R_n it is necessary and suticient that there exists
a sequence of open coverings lI, i--1, 2,..., of R which satisfies the
following conditions.
(1) lt*+) refines lt for every i.
2 lira inf order (x, 1;) _< n+ 1 for every x R.

(3) For any point xR and any neighborhood U of x there exists
i with Star (x, 1I) U.

J. Nagata’s characterization [7, Theorem 3 is a direct consequence
of this theorem.

We call a covering U of a space a multiplicative) one if for
k

every non-empty intersection 1 U of elements U, i--l,..., k, of lI
i--1

is also an element of lt. The maximal number n such that there

1) The detail of the content of the present note will be published in another place.
2) dim R denotes the covering dimension of R.
3) order(x, g3) denotes the number of elements of g3i which contain x.
4) Star (x,
5) lI*+l={Star(U,l+l); Uel+l}, where Star(U,+)= LJ[V; UI3 V= (=the

empty set), V
6) Cf. [1


