95. Homological Dimension and Product Spaces

By Yukihiro KODAMA

(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

Let X be a topological space and A a closed subset. Let us denote by $H_n(X, A:G)$ the n-dimensional unrestricted Čech homology group of (X, A) with coefficients in an abelian group G. The homological dimension of X with respect to G (notation: $D_*(X:G)$) is the largest integer n such that there exists a pair (A, B) of closed subsets of X whose n-dimensional Čech homology group $H_n(A, B:G)$ is not zero. It is obvious that the relation $D_*(X:G) \leq \dim X$ holds for any space X and any group G, where dim means the covering dimension. A topological space X is called full-dimensional with respect to an abelian group G in case $D_*(X:G) = \dim X$. Then the following problem arises naturally:

(*) {Given an abelian group G, what is a space which is full-dimensional with respect to the group?

The object of this paper is to give an answer to this problem (*) in case X is a locally compact fully normal space and G belongs to a class which includes several important groups. The following theorems hold.

Theorem 1. Let R be the additive group of all rationals. Then there exists a Cantor manifold M_0 with the property that a locally compact fully normal space X is full-dimensional with respect to R if and only if dim $(X \times M_0) = \dim X + \dim M_0$.

Theorem 2. Let Q_p be the additive group of all rationals reduced mod 1 whose denominators are powers of a prime p. Then there exists a Cantor manifold M_p with the property that a locally compact fully normal space X is full-dimensional with respect to Q_p if and only if dim $(X \times M_p) = \dim X + \dim M_p$.

A sequence $a = \{q_1, q_2, \dots\}$ is called a *k*-sequence if q_i is a divisor q_{i+1} for each *i* and $q_i > 1$ for some *i*. Let us denote by Z_q the cyclic group with order q_i . There exists a natural homomorphism h_i^{i+1} from $Z_{q_{i+1}}$ onto Z_{q_i} , $i=1, 2, \cdots$. By Z(a) we mean the limit group of the inverse system $\{Z_{q_i}: h_i^{i+1} | i=1, 2, \cdots\}$. In a previous paper [2, p. 390], we constructed the Cantor manifold Q(a) for each *k*-sequence *a*. The following theorem is a consequence of [3, Theorem 1].

Theorem 3. Let \mathfrak{a} be a sequence. Then a locally compact fully normal space X is full-dimensional with respect to $Z(\mathfrak{a})$ if and only if dim $(X \times Q(\mathfrak{a})) = \dim X + \dim Q(\mathfrak{a})$.

Since the cyclic group Z_q with order q is the group $Z(\mathfrak{a})$ for the