112. On Paracompactness of Topological Spaces

By Sitiro HANAI and Akihiro OKUYAMA Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1960)

K. Morita [5] proved that a topological space having the weak topology with respect to a closed covering is paracompact and normal if and only if each element of the closed covering is paracompact and normal.

In this note we shall investigate the paracompactness of a topological space X by the open covering of X.

Theorem 1. Let $\{G_{\alpha} \mid \alpha \in \Omega\}$ be a locally finite open covering of a topological space X. Then X is paracompact^{*)} if and only if each \overline{G}_{α} is paracompact.

Proof. Let $\mathfrak{l} = \{U_{\beta} \mid \beta \in \Lambda\}$ be an arbitrary open covering of X. Since each \overline{G}_{α} is paracompact, for each α we have a locally finite open covering $\{V_{\tau} \frown \overline{G}_{\alpha} \mid \gamma \in \Gamma\}$ of \overline{G}_{α} which is a refinement of $\{U_{\beta} \frown \overline{G}_{\alpha} \mid \beta \in \Lambda\}$ and each V_{τ} is an open set of X. By the closedness of \overline{G}_{α} , $\{V_{\tau} \frown \overline{G}_{\alpha} \mid \gamma \in \Gamma\}$ is locally finite in X and, so $\{V_{\tau} \frown G_{\alpha} \mid \gamma \in \Gamma\}$ is a locally finite collection of open sets (in X). By the hypothesis of the locally finiteness of $\{G_{\alpha} \mid \alpha \in \Omega\}$ $\{V_{\tau} \frown G_{\alpha} \mid \gamma \in \Gamma, \alpha \in \Omega\}$ is a locally finite open covering of X which is a refinement of \mathfrak{l} . This completes the proof.

Theorem 2. Let $\mathfrak{ll} = \{G_a \mid a \in \Omega\}$ be a star-finite open covering of a regular T_1 space X. If each G_a is paracompact as a subspace of X and each $\operatorname{Fr}(G_a)$ has the Lindelöf property, then X is paracompact.

Theorem 3. Let $\mathfrak{U} = \{G_{\alpha} \mid \alpha \in \Omega\}$ be a locally finite open covering of a regular T_1 space X. If each G_{α} is paracompact and each $\operatorname{Fr}(G_{\alpha})$ is compact, then X is paracompact.

Proceeding the proof of the above theorems, we prove the following lemmas.

Lemma 1. Let $\{G_i, G_2\}$ be an open covering of a regular T_1 space X such that $G_i(i=1, 2)$ are paracompact as subspaces of X. In order that X is paracompact it is necessary and sufficient that there are mutually disjoint open sets $H_i(i=1,2)$ of X such that $H_i \subset G_j(i \neq j; i, j=1, 2)$ and $H_i \supset \operatorname{Fr}(G_i)$ (i=1, 2).

Proof. Necessity. By [2] X is normal. Since $Fr(G_i)$ (i=1,2) are closed in X and are mutually disjoint, there exist open sets $H_i(i=1,2)$ satisfying the above conditions.

^{*)} Topological space X is said to be paracompact if each open covering of X has a locally finite open covering as a refinement.